【题目】如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为( )
A.8
B.9
C.10
D.11
【答案】C
【解析】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,
在△ABC和△CED中,
,
∴△ACB≌△DCE(AAS),
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sb=Sa+Sc=1+9=10,
∴b的面积为10,
故答案为:C.
由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;根据正方形的性质及同角的余角相等得出∠BAC=∠DCE,然后利用AAS判断出△ACB≌△DCE,根据全等三角形对应边相等得出AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=1+9=10。
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据: ≈1.73).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系式是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国人工智能在2017年迎来发展的“应用元年“,预计2020年中国人工智能核心产业规模超1500亿元,将150000000000这个数用科学记数法表示为( )
A. 15×1010B. 1.5×1011C. 1.5×1012D. 0.15×1012
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.
(1)判断AC与图中的那条线段相等,并证明你的结论;
(2)若CE的长为 ,求BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市超市准备购进A、B两种品牌的书包共100个,已知两种书包的进价如下表所示,设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为y元.
品牌 | 购买个数(个) | 进价(元/个) | 售价(元/个) | 获利(元) |
A | x | 50 | 60 | __________ |
B | __________ | 40 | 55 | __________ |
(1)将表格的信息填写完整;
(2)求y关于x的函数表达式;
(3)如果购进两种书包的总费用不超过4500元且购进B种书包的数量不大于A种书包的3倍,那么超市如何进货才能获利最大?并求出最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com