精英家教网 > 初中数学 > 题目详情
18.如图,△ABC中,AB=AC,点D在边AB上,点E在线段CD的垂直平分线上,且AE∥BC,ED交AC于点O,判断△AOE与△DOC是否相似,说明理由.

分析 结论:△AOE∽△DOC,作EM⊥BA于M,EN⊥AC于N,先证明△EMD≌△ENC,推出∠EDM=∠ECN,再证明△AOD∽△EOC,推出$\frac{AO}{EO}$=$\frac{DO}{CO}$,推出$\frac{AO}{OD}$=$\frac{EO}{OC}$,由此即可证明.

解答 解:结论:△AOE∽△DOC.理由如下:
如图,作EM⊥BA于M,EN⊥AC于N,

∵AB=AC,
∴∠B=∠ACB,
∵AE∥BC,
∴∠MAE=∠B,∠EAC=∠ACB,
∴∠MAE=∠EAN,
∴EM=EN,
在Rt△EMD和Rt△ENC中,
$\left\{\begin{array}{l}{EM=EN}\\{ED=EC}\end{array}\right.$,
∴△EMD≌△ENC,
∴∠EDM=∠ECN,∵∠AOD=∠EOC,
∴△AOD∽△EOC,
∴$\frac{AO}{EO}$=$\frac{DO}{CO}$,
∴$\frac{AO}{OD}$=$\frac{EO}{OC}$,∵∠AOE=∠DOC,
∴△AOE∽△DOC.

点评 本题考查全等三角形的判定和性质、相似三角形的判定和性质、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,在一个直角三角形中截取一个最大的正方形,已知AE=15厘米,EC=20厘米,求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:
(1)被调查的学生共有100 人,并补全条形统计图;
(2)在扇形统计图中,m=30,n=10;
(3)全校学生中喜欢篮球的人数大约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知:如图,在△ABC中,∠BAC的平分线AP与BC的垂直平分线PQ相交于点P,过点P分别作PM⊥AC于点M,PN⊥AB交AB延长线于点N,连接PB,PC.求证:BN=CM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读下列材料:
1×2=$\frac{1}{3}$(1×2×3-0×1×2),
2×3=$\frac{1}{3}$(2×3×4-1×2×3),
3×4=$\frac{1}{3}$(3×4×5-2×3×4),
由以上三个等式相加,可得:1×2+2×3+3×4=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)=$\frac{1}{3}$(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4)=$\frac{1}{3}$×3×4×5=20.
根据以上材料,请你完成下列各题:
(1)1×2+2×3+3×4+…+10×11;(写出过程)
(2)1×2+2×3+3×4+…+n(n+1)=$\frac{1}{3}$n×(n+1)×(n+2);(用含n的代数式表示)
(3)根据以上学习经验,猜想1×2×3+2×3×4+…+18×19×20=35910.(写出最后结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知正方形DEFG的边DE与等腰直角三角形ABC的斜边AB均在直线l上,点B与点D重合,DE=4,AB=2.若正方形DEFG保持不动,△ABC沿直线l向右以每秒1个单位的速度匀速滑动,试写出从△ABC开始滑动到与正方形DEFG完全脱离开的两图形重叠部分的面积S与滑动时间t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在△ABC中,D为BC边的中点,E为AC边上任意一点,BE交AD于点O,在研究这一问题时,发现了如下的事实:
(1)当$\frac{AE}{AC}$=$\frac{1}{2}$时,有$\frac{AO}{AD}$=$\frac{2}{3}$
(2)当$\frac{AE}{AC}$=$\frac{1}{3}$时,有$\frac{AO}{AD}$=$\frac{1}{2}$;
(3)当$\frac{AE}{AC}$=$\frac{1}{4}$,有$\frac{AO}{AD}$=$\frac{2}{5}$
在图4中,当$\frac{AE}{AC}$=$\frac{1}{n}$时,请你猜想$\frac{AO}{AD}$的值,用n表示的一般结论$\frac{2}{n+2}$(并给出证明)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.用一根长15cm的细铁丝围成一个三角形,其中,三边的长(单位:cm)分别为整数a、b、c,且a>b>c.
(1)请写出一组符合上述条件的a、b、c的值6,5,4;
(2)a最大可取7,c最小可取2.

查看答案和解析>>

同步练习册答案