精英家教网 > 初中数学 > 题目详情
如图,若正△A1B1C1内接于正△ABC的内切圆,则的值为( )

A.
B.
C.
D.
【答案】分析:由于△ABC、△A1B1C1都是正三角形,因此它们的外心与内心重合;可过O分别作AB、A1B1的垂线,连接OA、OA1;在构建的含特殊角的直角三角形中,用⊙O的半径分别表示出AB、A1B1的长,进而可求出它们的比例关系.
解答:解:∵△A1B1C1和△ABC都是正三角形,∴它们的内心与外心重合;
如图:设圆的半径为R;
Rt△OAD中,∠OAD=30°,OD=R;
AD=OD•=R,即AB=2R;
同理可求得A1B1=R;
==
故选A.
点评:本题主要考查了等边三角形的性质:等边三角形的内心、外心、重心、垂心、旁心重合,称为等边三角形的中心(五心合一).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1),△ABC是正三角形,曲线DA1B1C1…叫做“正三角形ABC的渐开线”,其中
A1C
A1B1
B1C1
,…依次连接,它们的圆心依次按A,B,C循环.则曲线CA1B1C1叫做正△ABC的1重渐开线,曲线CA1B1C1A2B2C2叫做正△ABC的2重渐开线,…,曲线CA1B1C1A2…AnBnCn叫做正△ABC的n重渐开线.如图(2),四边形ABCD是正方形,曲线CA1B1C1D1…叫做“正方形ABCD的渐开线”,其中
A1D
A1B1
B1C1
C1D1
…依次连接,它们的圆心依次按A,B,C,D循环.则曲线DA1B1C1D1叫做正方形ABCD的1重渐开线,…,曲线DA1B1C1D1A2…AnBnCnDn叫做正方形ABCD的n重渐开线.依次下去,可得正n形的n重渐开线(n≥3).
若AB=1,则正方形的2重渐开线的长为18π;若正n边形的边长为1,则该正n边形的n重渐开线的长为
 

精英家教网

查看答案和解析>>

科目:初中数学 来源:鼓楼区2008年第一次模拟调研测试、九年级数学试卷 题型:044

如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC、A1B1相交于点M.

(1)点B1的坐标为________,线段B1C的长为________

(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.

①设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;

②是否存在一条直线l,如果将坐标纸沿直线l折叠,恰好使点A和B2重合,且点A2和B重合,若存在,请直接写出直线l的关系式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案