精英家教网 > 初中数学 > 题目详情

两个等腰直角三角板ADB和CDH如图所示放置,连接AC,连接BH并延长交AC于点E,请你在图中找出一对全等三角形,并写出证明过程.

答案:
解析:

  △BDH≌△ADC

  证明:在等腰Rt△BDA、等腰Rt△HDC中

  

  ∴△BDH≌△ADC


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

实践探究题:
(1)如图1,在直角坐标系中,一个直角边为4等腰直角三角形板ABC的直角顶点B放至点O的位置,点A、C分别在x轴的负半轴和y轴的正半轴上,将△ABC绕点A逆时针旋转90°至△AKL的位置,求直线AL的解析式;
(2)如图2,将任意两个等腰直角三角板△ABC和△MNP放至直角坐标系中,直角顶点B、N分别在y轴的正半轴和负半轴上,顶点M、A都在x轴的负半轴上,顶点C、P分别在第二象限和第三象限,AC和MP的中点分别为E、F,请判断△OEF的形状,并证明你的结论;
(3)如图3,将第(1)问中的等腰直角三角形板ABC顺时针旋转180°至△OMN的位置.G为线段OC的延长线上任意一点,作GH⊥AG交x轴于H,并交直线MN于Q.请探究下面两个结论:①
GN+GC
NQ
为定值;②
GN-GC
NQ
为定值.其中只有一个是正确的,请判断正确的结论,并求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为k.
解答问题:
(1)①当点C与点F重合时,如图2所示,可得
AM
DM
的值为
1
1
;②在平移过程中,
AM
DM
的值为
k
2
k
2
(用含k的代数式表示);
(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算
AM
DM
的值;
(3)将图1中的三角板ABC绕点C逆时针旋转α度,0<α≤90,原题中的其他条件保持不变.计算
AM
DM
的值(用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

两个大小不同的等腰直角三角板,如图1所示:

(1)若两个等腰直角三角板如图2放置,求证:EC⊥BD.
(2)若两个等腰直角三角板如图3放置,使B、C、D在同一条直线上,连接EC交AD于点M,你认为EC与BD是否仍然垂直?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

两个大小不同的等腰直角三角板,如图1所示:

(1)若两个等腰直角三角板如图2放置,求证:EC⊥BD.
(2)若两个等腰直角三角板如图3放置,使B、C、D在同一条直线上,连接EC交AD于点M,你认为EC与BD是否仍然垂直?请说明理由.

查看答案和解析>>

同步练习册答案