精英家教网 > 初中数学 > 题目详情
14.计算
(1)(12x3-8x2+16x)÷(-4x)   
(2)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{9{9}^{2}}$)(1-$\frac{1}{10{0}^{2}}$)
(3)$\sqrt{25}$-$\root{3}{8}$-($\sqrt{3}$-2)2($\sqrt{3}$+2)2
(4)运用乘法公式计算:99×101.

分析 (1)直接利用多项式除以单项式运算法则求出答案;
(2)直接利用平方差公式分解因式进而化简求出答案;
(3)直接利用二次根式以及立方根的定义结合平方差公式化简求出答案;
(4)直接利用平方差公式化简求出答案.

解答 解:(1)(12x3-8x2+16x)÷(-4x)   
=-3x2+2x-4;

(2)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{9{9}^{2}}$)(1-$\frac{1}{10{0}^{2}}$)
=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)(1-$\frac{1}{4}$)(1+$\frac{1}{4}$)…(1-$\frac{1}{100}$)(1+$\frac{1}{100}$)
=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{3}{4}$×…×$\frac{99}{100}$×$\frac{101}{100}$
=$\frac{1}{2}$×$\frac{101}{100}$
=$\frac{101}{200}$;

(3)$\sqrt{25}$-$\root{3}{8}$-($\sqrt{3}$-2)2($\sqrt{3}$+2)2
=5-2-[($\sqrt{3}$-2)($\sqrt{3}$+2)]2
=3-12
=2;

(4)99×101
=(100-1)×(100+1)
=10000-1
=9999.

点评 此题主要考查了整式的除法运算以及实数运算以及平方差公式的应用,正确应用平方差公式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图所示,在平面直角坐标系中,直线l1:y=x+1与l2:y=-x+2分别交x轴于点B和点C,点D是直线l2与y轴的交点,两直线交于点A.
(1)求点A的坐标;
(2)设M(x,y)是直线l1上一点.△BCM的面积为S.求S与x的函数关系式;并探究当点M运动到什么位置时,△BCM的面积为6.
(3)直线11上是否存在点P,使△OBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.
(4)过点A作x轴的垂线13,在13上是否存在一点Q,使得△BDQ的周长最小?若存在,请求出点Q的坐标和周长的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木,问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K位于EF的中点,出北门20步到A处有一树木,出南门14步到C,向西行1775步到B处正好看到A处的树木(即点D在直线AB上),小城的边长为多少步,若设小城的边长为2x 步,则可列方程为$\frac{20}{20+14+2x}$=$\frac{x}{1775}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于点D,CE⊥BD的延长线于点E,求证:BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在△ABC中,AC=3,AB=7,则中线AD的范围是2<AD<5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.请先阅读下列一组内容,然后解答问题:
因为:$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$…$\frac{1}{9×10}$=$\frac{1}{9}$-$\frac{1}{10}$
所以:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$
=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{9}$-$\frac{1}{10}$)
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{9}$-$\frac{1}{10}$
=1-$\frac{1}{10}$=$\frac{9}{10}$
解答下面的问题:
(1)若n为正整数,请你猜想$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$;
(2)利用你的结论求:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2011×2012}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线ED交CB的延长线于F点,连接PF.
(1)求证:OD=OE;
(2)求证:PF是⊙O的切线;
(3)若∠POC=120°,AC=12,将扇形POA围成一个圆锥的侧面,求该圆锥的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知x2-mx+9=0的一根为x1=4+$\sqrt{7}$,求另一根x2和m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知函数y=-3(x-1)2,当x<1时,y随x的增大而增大,当x=1时,y有最大值,为0.

查看答案和解析>>

同步练习册答案