精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD沿线段AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.

(1)求证:△AGE≌△AGD
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2 ,求BE的长.

【答案】
(1)

证明:∵△AEF是由△ADF折叠得到的,

∴AD=AE,∠DAG=∠EAG,

又∵AG=AG

∴△AGE≌△AGD;


(2)

解:AF×GF=2EG2

证明如下:

连接DE交GF于点O

∵△AEF是由△ADF折叠得到的

∠DAG=∠EAG,DF=EF

∵△AGE≌△AGD

∴GD=GE,∠AGD=∠AGE

∴∠FGD=∠FGE

∵EG∥CD

∴∠DFG=∠FGE

∴∠FGD=∠DFG

∴GD=DF

∴GD=EG=EF=DF

∴四边形DGEF是菱形

AF⊥DE,OF= GF

∴∠ADF=∠DOF=90°

又∵∠DFO=∠DFA

∴△DFO∽△AFD

∴OF×AF=DF2

∵OF= GF,DF=EG

GF×AF=EG2

即:AF×GF=2EG2


(3)

解:过点G作GH⊥CD于H

则四边形CHGE是矩形,

∴CE=GH

设GF=x,则AF=6+x

∵AF×GF=2EG2EG=2

∴x(6+x)=40

解得:x=4

∴GF=4,

∴AF=6+4=10

在Rt△AEF中

AE=

∴BC=AD=AE=4

∵GH∥AD

∴△FGH∽△FAD

∴CE=GH=

∴BE=BC﹣CE=4 =


【解析】(1)先依据翻折的性质可得AD=AE,∠DAG=∠EAG,易得△AGE≌△AGD;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF= GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FOAF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是(
A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率
B.任意写一个正整数,它能被2整除的概率
C.抛一枚硬币,连续两次出现正面的概率
D.掷一枚正六面体的骰子,出现1点的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:

x

30

32

34

36

y

40

36

32

28


(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,王老师一共调查了多少名同学?
(2)将上面的条形统计图补充完整;并求出“D”所占的圆心角的度数;
(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:(﹣1)2017﹣4cos60°+ +
(2)先化简,再求值:(a﹣ )÷ ,其中a满足a2+3a﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:等腰三角形、平行四边形、菱形、双曲线、抛物线.这些都是我们在初中学习阶段学过的几何图形或函数的图象,那么从它们之中随机抽取两个,得到的都是中心对称图形的概率是(
A.
B.
C.
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结算题
(1)计算:|1﹣ |+3tan30°﹣(2017﹣π)0﹣(﹣ 1
(2)已知x、y满足方程组 ,求代数式 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b﹣ )x+c=0(a≠0)的两根之和(
A.大于0
B.等于0
C.小于0
D.不能确定

查看答案和解析>>

同步练习册答案