【题目】设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为( )
A.B.2C.D.3
【答案】A
【解析】
以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=x上),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.
以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.
联立直线AB及双曲线解析式成方程组,,
解得:,,
∴点A的坐标为(﹣,﹣),点B的坐标为(,).
∵PQ=6,
∴OP=3,点P的坐标为(﹣,).
根据图形的对称性可知:PP′=AB=QQ′,
∴点P′的坐标为(﹣+2,+2).
又∵点P′在双曲线y=上,
∴(﹣+2)(+2)=k,
解得:k=.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,直线AB与轴交于点A,与轴交于点B,与双曲线()交于点C,过点C作CD⊥轴于点D,过点B作BE⊥CD于点E,tan∠BCE=,点E的坐标为(2, ),连接AE.
(1)求的值;
(2)求△ACE的面积 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.
(1)试求、的值,并写出该二次函数表达式;
(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:
①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?
②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=2,CD=1,则△ABC的边长为( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;
(3)四边形AA2C2C的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)边长分别为5,12,13的三角形内切圆半径是 ;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其左视图是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.
(1)求证:△CBE为等边三角形;
(2)若AD=5,DE=7,求CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com