精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
(1)证明见解析;(2).

试题分析:从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.
试题解析:(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC,
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形,
又∵BE=FE,
∴四边形BCFE是菱形;
(2)解:∵∠BCF=120°,
∴∠EBC=60°,
∴△EBC是等边三角形,
∴菱形的边长为4,高为
∴菱形的面积为4×=.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在菱形ABCD中,∠B= 60°,把一个含60°角的三角尺与这个菱形叠合,使三角尺60°角的顶点与点A重合,将三角尺绕点A按逆时针方向旋转 .
(1)如图1,当三角尺的两边分别与菱形的两边BC、CD相交于点E、F.求证:CE+CF=AB;
(2)如图2,当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F.写出此时CE、CF、AB长度之间关系的结论.(不需要证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:F是平行四边形ABCD中AB边的中点,E是BC边上的任意一点,,那么=_____。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题错误的是(  )
A.对角线垂直且相等的四边形是正方形
B.对角线互相垂直平分的四边形为菱形
C.直角三角形的两直角边长是3和4,则斜边长是5
D.顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相互垂直

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD中,E、F分别为BC、CD上的点,⊿ACF经旋转后能与⊿ABE重合,且∠BAE=20º,则∠FEC的度数是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(  )
A、矩形    B、菱形    C、正方形   D、平形四边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在下列命题中,真命题是  (   )
A.两条对角线相等的四边形是矩形
B.两条对角线垂直的四边形是菱形
C.两条对角线垂直且相等的四边形是正方形
D.两条对角线相等的平行四边形是矩形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为     

查看答案和解析>>

同步练习册答案