精英家教网 > 初中数学 > 题目详情
(本题12分)已知两直线分别经过点A(3,0),点B(-1,0),并且当两直线同时相交于y负半轴的点C时,恰好有,经过点A、B、C的抛物线的对称轴与直线交于点D,如图所示。

(1)求抛物线的函数解析式;
(2)当直线绕点C顺时针旋转一个锐角时,它与抛物线的另一个交点为P(x,y),求四边形APCB面积S关于x的函数解析式,并求S的最大值;
(3)当直线绕点C旋转时,它与抛物线的另一个交点为P,请找出使△PCD为等腰三角形的点P,并求出点P的坐标。
(1)可由两角相等证得:△BOC∽△COA。
,即

∴C(0,-)
,把(0,-)代入,得a=
∴抛物线的函数解析式为
(2)
(0<x<3)
当x=时,S的最大值是
(3)可得直线,直线
抛物线的对称轴为,抛物线顶点为(1,),由此得D(1,)
① 以点D为圆心,线段DC长为半径画弧,交抛物线于点,由抛物线对称性可知点为点C关于直线的对称点,
∴点(2,),此时△为等腰三角形;
② 当以点C为圆心,线段CD长为半径画弧时,与抛物线交点为点和点B,而三点B、C、D在同一直线上,不能构成三角形;
③ 作线段DC的中垂线,交CD于点M,交抛物线于点P2,P3,交y轴于点F,
因为BO=1,,所以∠MCF=∠OCB=30°,
而CD=2,CM=CD=1,则CF=,OF=
则F(0,),因,所以直线
代入,解得x=1或x=2,
说明P2就是顶点(1,),
P3就是P1(2,)
综上所述,当点P为(-2,)或(1,)时,△PCD为等腰三角形。

试题分析:(1)由两组底脚相等,推导出两个三角形相似,从而确立C点坐标,再结合AB两点的坐标,可以求得二次函数解析式。
(2)由于绕C点运动,因此P的坐标设为(x,y),四边形面积可以写为无未知量,可以由的高分别为-y和x,又P点为抛物线上一点,所以可以算出y和x的关系式,进而求出S与x的函数式。由于解出来的函数为二次函数,x的取值范围已知,求出函数对称轴,得出函数对称轴在此范围内,所以要求最大值,实际上则是代入对称轴所对应的x值,可得出S。
(3)通过分类讨论,各种不同的情况所对应的等腰三角形也不相同,由已知条件可以推导出两条直线的方程,结合函数图像,可以得出P点的坐标。
点评:一般试卷最后一道题都是综合性的题目,学生需要掌握几何图形以及函数图形、函数表达式的知识,从而将复杂的题目简单化,进而可以求出一些未知量。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(12分)如图,顶点为D的抛物线与x轴相交于A、B两点,与y轴相交于点C,连结BC,已知△BOC是等腰三角形。

(1)求点B的坐标及抛物线的解析式;
(2)求四边形ACDB的面积;
(3)若点E(x,y)是y轴右侧的抛物线上不同于点B的任意一点,设以A,B,C,E为顶点的四边形的面积为S。①求S与x之间的函数关系式。②若以A,B,C,E为顶点的四边形与四边形ACDB的面积相等,求点E的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图1,抛物线过点且对称轴为直线点B为直线OA下方的抛物线上一动点,点B的横坐标为m.

(1)求该抛物线的解析式:
(2)若的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)如图2,过点B作直线轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图像经过点(-1,6)
(1)求这个二次函数的关系式;
(2)求二次函数图像与x轴的交点的坐标;
(3)画出图像的草图,观察图像,直接写出当y>0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线y=ax2+b x+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是(  )
A. a>0B.b<0C.c<0D.a+b+c>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,经过原点的抛物线轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B,过点B作直线BC∥轴与抛物线交于点C(B、C不重合),连结CP.

(1)当时,求点A的坐标及BC的长;
(2)当时,连结CA,问为何值时
(3)过点P作,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并求出相对应的点E坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“十八大”报告一大亮点就是关注民生问题,交通问题已经成了全社会关注的热点.为了解新建道路的通行能力,某研究表明,某种情况下,车流速度 (单位:千米/时)是车流密度(单位:辆/千米)的函数,函数图象如图所示.

(1)求关于的函数表达式;
(2)车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度.若车流速度低于80千米/时,求当车流密度为多少时,车流量(单位:辆/时)达到最大,并求出这一最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线轴、轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从轴开始以每秒1个长度单位的速度向上平行移动(即EF∥轴),并且分别与轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.

(1)当t=1秒时,求梯形OPFE的面积;
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线上部分点的横坐标,纵坐标的对应值如下表:
x

-2
-1
0
1
2

y

0
4
6
6
4

从上表可知,下列说法中正确的是        .(填写序号)
①抛物线与轴的一个交点为(3,0); ②函数的最大值为6;
③抛物线的对称轴是;       ④在对称轴左侧,增大而增大.

查看答案和解析>>

同步练习册答案