精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,AB=CD,AB∥CD,点E、F在线段BD上,且BE=DF,连接AE、CF.

(1)指出线段AE与CF的关系,并说明理由;

(2)若将题中的条件“点E、F在线段BD上”改为“点E、F在直线BD上” ,那么(1)中的结论还一定能成立吗?若能,直接写出结论;若不能,请举出反例加以说明.

【答案】(1)AE∥CF,AE=CF(2)不一定成立

【解析】

(1)由SAS证明△ABE≌△CDF,即可得出结论;
(2)画出图形,即可得出结论.

解:(1) AE∥CF,AE=CF 理由如下:

∵AB∥CD,∴∠ABE=∠CDF.

在△ABE和△CDF中,

∴△ABE≌△CDF.

∴AE=CF,∠AEB=∠CFD.

∴∠AED = ∠CFB,

∴AE∥CF

(2)不一定成立;如图所示,AE与CF不平行,AE≠CF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=RtAB=5cmBC=3cm,若动点P从点C开始,按CABC的路径运动,且速度为每秒1cm,设出发的时间为t秒.

1)出发2秒后,求△ABP的周长.

2)问t满足什么条件时,△BCP为直角三角形?

3)另有一点Q,从点C开始,按CBAC的路径运动,且速度为每秒2cm,若PQ两点同时出发,当PQ中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下列数组作为三角形的三条边长,其中能构成直角三角形的是( )

A. 1 3 B. 5 C. 1.522.5 D.

【答案】C

【解析】A12+2≠32,不能构成直角三角形,故选项错误;

B(2+2≠52,不能构成直角三角形,故选项错误;

C1.52+22=2.52,能构成直角三角形,故选项正确;

D、(2+22,不能构成直角三角形,故选项错误.

故选:C

型】单选题
束】
3

【题目】在RtABC中,C=90°,AC=9,BC=12,则点C到斜边AB的距离是( )

ABC9D6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.
(1)求证:BE=DF;
(2)求证:AF∥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点间的距离y与点P走过的路程x的函数关系如图,那么点P所走的图形是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,D是BC的中点.
(1)作图: ①过B作AC的平行线BH;
②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.
(2)在图中找出一对全等的三角形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)=3.

(2)(y+2)2=(3y﹣1)2

(3)(x﹣2)(x+5)=8.

(4)(2x+1)2=﹣6x﹣3.

(5)2x2﹣3x﹣2=0.

(6)4x2﹣12x﹣1=0(配方法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,D是BC的中点.
(1)作图: ①过B作AC的平行线BH;
②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.
(2)在图中找出一对全等的三角形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 矩形ABCD中,AB=8,BC=6,P为AD上一点, 将△ABP 沿BP翻折至△EBP, PE与CD相交于点O,BE与DC相交于G点,且OE=OD,

(1)求证:AP=DG

(2)若设AP=x,则GE=______,GC=_______(用含有x的代数式表示);并求AP的长度

查看答案和解析>>

同步练习册答案