精英家教网 > 初中数学 > 题目详情

【题目】如图,已知平行四边形,过于点,若在平行四边形内取一点,则该点到平行四边形的四个顶点的距离均不小于1的概率为_______

【答案】

【解析】

根据题意以平行四边形ABCD的各个顶点为圆心、半径为1作圆如图所示,可得当该点位于图中阴影部分区域时,它到四个顶点的距离均不小于1.因此算出平行四边形ABCD的面积和阴影部分区域的面积,利用几何概率计算公式加以计算,即可得到所求的概率.

解:分别以平行四边形ABCD的各个顶点为圆心,作半径为1的圆,如图所示:

在平行四边形ABCD内任取一点P,则点P位于四个圆的外部或在圆上时,满足点P到四个顶点的距离均不小于1,即图中的阴影部分区域

S阴影=S平行四边形ABCD-S空白=32-π×12=32-π.

因此,该点到四个顶点的距离均不小于1的概率:.

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图和图,请根据相关信息,解答下列是问题:

(1)本次接受随机抽样调查的学生人数为    ,图中m的值是    

(2)求本次调查获取的样本数据的平均数、众数和中位数;

(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师为学校购买运动会的奖品后,回学校向后勤处赵主任交账说:我买了两种书共105本,单价分别为8元和12元,买书前我领了1600元,现在还余518元.赵主任算了一下说:你肯定搞错了.

1)赵主任为什么说他搞错了,请你用方程组的知识给予解释;

2)王老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,若存在一个内角角度,是另外一个内角角度的倍(为大于1的正整数),则称倍角三角形.例如,在中,,可知,所以3倍角三角形.

1)在中,,则________倍角三角形;

2)若3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的,求的最小内角.

3)若2倍角三角形,且,请直接写出的最小内角的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计),第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车,小聪周末到该风景区游玩,上午740到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林,离入口处的路程(米)与时间(分)的函数关系如图2所示.

1)求第一班车从入口处到达塔林的时间.

2)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变).

3)若小聪在830850之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过3分钟的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

⑴请画出△ABC关于y轴对称的△A’B’C’(其中A’,B’,C’分別是A,B,C的对应点,不写画法);

⑵直接写出A’,B’,C’三点的坐标:A’ ( ),B’( ),C’( );

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为A的抛物线y=a(x+2)2﹣4交x轴于点B(1,0),连接AB,过原点O作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.

(1)求抛物线的解析式;
(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,OB=AP;
(3)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH,如图2.设小正方形的边长为x厘米.

(1)当矩形纸板ABCD的一边长为90厘米时,求纸盒的侧面积的最大值;
(2)当EH:EF=7:2,且侧面积与底面积之比为9:7时,求x的值.

查看答案和解析>>

同步练习册答案