精英家教网 > 初中数学 > 题目详情
如图,将抛物线y=x2沿x轴正方向平移3个单位得到抛物线l,直线y=-2.
(1)求抛物线l的解析式;
(2)点A是抛物线l上一点,点B是直线y=-2上一点,是否存在等腰△OAB?若存在,求点A,B两点的坐标;若不存在,说明理由;
(3)若将上题中的“沿x轴正方向平移3个单位”改为“沿x轴正方向平移n个单位”,其它条件不变,探究上题(2)中的问题.
(1)抛物线y=x2沿x轴正方向平移3个单位得到抛物线l的解析式为y=(x-3)2

(2)存在,当OA=OB时,即AB关于x轴对称时,三角形OAB为的等腰三角形,
设B点坐标为(x,-2)则A点坐标为A(x,2),
又∵点A是抛物线l上一点,
∴(x-3)2=2,解得x=3+
2
或x=3-
2

∴AB两点的坐标分别为A(3+
2
,2),B(3+
2
,-2)或为A(3-
2
,2),B(3-
2
,-2);

(3)抛物线y=x2沿x轴正方向平移n个单位得到抛物线l的解析式为y=(x-n)2
若三角形OAB为的等腰三角形,则OA=OB,即AB关于x轴对称,
设B点坐标为(x,-2)则A点坐标为A(x,2),
又∵点A是抛物线l上一点,
∴(x-n)2=2,解得x=n+
2
或x=n-
2

∴AB两点的坐标分别为A(n+
2
,2),B(n+
2
,-2)或为A(n-
2
,2),B(n-
2
,-2);
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为直线x=-1,B(1,0),C(0,-3).
(1)求二次函数y=ax2+bx+c(a≠0)的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).
(1)试求a,b所满足的关系式;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的
5
4
倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线C1:y=ax2+4ax+4a-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求抛物线的解析式和顶点P的坐标;
(2)将抛物线沿x轴翻折,再向右平移,平移后的抛物线C2的顶点为M,当点P、M关于点B成中心对称时,求平移后的抛物线C2的解析式;
(3)直线y=-
3
5
x+m
与抛物线C1、C2的对称轴分别交于点E、F,设由点E、P、F、M构成的四边形的面积为s,试用含m的代数式表示s.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
1
2
x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.
(1)求a的值;
(2)求A,B的坐标;
(3)以AC,CB为一组邻边作?ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=-
1
3
x+1
分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.
(1)写出点A、B、C、D的坐标;
(2)求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;
(3)在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=mx2-(m+5)x+5.
(1)求证:它的图象与x轴必有交点,且过x轴上一定点;
(2)这条抛物线与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,过(1)中定点的直线L;y=x+k交y轴于点D,且AB=4,圆心在直线L上的⊙M为A、B两点,求抛物线和直线的关系式,弦AB与弧
AB
围成的弓形面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2-3x+4和抛物线y=x2-3x-4相交于A,B两点.点P在抛物线C1上,且位于点A和点B之间;点Q在抛物线C2上,也位于点A和点B之间.
(1)求线段AB的长;
(2)当PQy轴时,求PQ长度的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴.若斜边上的高为h,则(  )
A.h<1B.h=1C.1<h<2D.h>2

查看答案和解析>>

同步练习册答案