精英家教网 > 初中数学 > 题目详情

【题目】某种蔬菜的单价 与销售月份x之间的关系如图1所示,成本 与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)

1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是 元.(利润=售价-成本);

2)设每千克该蔬菜销售利润为P,请列出xP之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?

【答案】12;(25月时利润最大,最大利润为元.

【解析】

1)找出当x=6时,y1y2的值,二者做差即可得出结论;

2)观察图象找出点的坐标,利用待定系数法即可求出y1y2关于x的函数关系式,二者做差后利用二次函数的性质即可解决最值问题.

1)当x=6时,y1=3y2=1

y1y2=31=2,∴6月份出售这种蔬菜每千克的收益是2元.

2)设y1=mx+ny2=ax62+1

将(35)、(63)代入y1=mx+n,得,解得:,∴y1x+7

将(34)代入y2=ax62+14=a362+1,解得:a,∴y2x62+1x24x+13,∴P=y1y2x+7﹣(x24x+13x2x6x52

0,∴当x=5时,P取最大值,最大值为

答:5月份出售这种蔬菜,每千克的收益最大,最大利润是/千克.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为的正方形的对角线交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕于点,则

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】)如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5OC=6,则另一直角边BC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(a,1)、B(﹣1,b)都在函数(x0)的图象上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD的顶点Ax轴负半轴上,顶点Bx轴正半轴上.若抛物线p=ax2-10ax+8a0)经过点CD,则点B的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要建一个面积为150平方米的长方形养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙,墙长为18米,另三边用篱笆围成,如篱笆长度为35米,且要求用完。求鸡场的长与宽各是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿BC的方向运动,且DE始终经过点A,EFAC交于M点.

(1)求证:△ABE∽△ECM;

(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;

(3)当线段AM最短时,求重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,PQ切⊙OE,ACPQC,交⊙OD.

(1)求证:AE平分∠BAC;

(2)AD=2,EC=BAC=60°,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,点Ax轴负半轴上一个定点,点P是函数上一个动点,轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会  

A. 先增后减 B. 先减后增 C. 逐渐减小 D. 逐渐增大

查看答案和解析>>

同步练习册答案