精英家教网 > 初中数学 > 题目详情
如图,已知直线l的函数表达式为y=
34
x+3,它与x轴、y轴的交点分别为A、B两点.
(1)求点A、点B的坐标;
(2)设F是x轴上一动点,⊙P经过点B且与x轴相切于点F设⊙P的圆心坐标为P(x,y),求y与x的函数关系式;
(3)是否存在这样的⊙P,既与x轴相切又与直线l相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.
分析:(1)根据坐标轴上点的坐标特征易得以A点坐标为(-4,0),B点坐标为(0,3);
(2)过点P作PD⊥y轴于D,则PD=|x|,BD=|3-y|,根据切线的性质得PF=y,则PB=y,在Rt△BDP中,根据勾股定理得到y2=x2+(3-y)2,然后整理得到y=
1
6
x2+
3
2

(3)由于⊙P与x轴相切于点F,且与直线l相切于点B,根据切线长定理得到AB=AF,而AB=5,所以AF=|x+4|=5,解得x=1或x=-9,再把x=1和x=-9分别代入y=
1
6
x2+
3
2
计算出对应的函数值,即可确定P点坐标.
解答:解:(1)当x=0时,y=
3
4
x+3=3;
当y=0时,
3
4
x+3=0,解得x=-4,
所以A点坐标为(-4,0),B点坐标为(0,3);

(2)过点P作PD⊥y轴于D,如图1,则PD=|x|,BD=|3-y|,
∵⊙P经过点B且与x轴相切于点F
∴PB=PF=y,
在Rt△BDP中,
∴PB2=PD2+BD2
∴y2=x2+(3-y)2
∴y=
1
6
x2+
3
2


(3)存在.
∵⊙P与x轴相切于点F,且与直线l相切于点B,
∴AB=AF
∵AB2=OA2+OB2=52
∴AF=5,
∵AF=|x+4|,
∴|x+4|=5,
∴x=1或x=-9,
当x=1时,y=
1
6
x2+
3
2
=
1
6
+
3
2
=
5
3

当x=-9时,y=
1
6
x2+
3
2
=
1
6
×(-9)2+
3
2
=15,
∴点P的坐标为(1,
5
3
)或(-9,15).
点评:本题考查了圆的综合题:熟练掌握切线的性质和切线长定理、一次函数的性质;会利用坐标表示线段和运用勾股定理进行几何计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l与坐标轴相交于点A(2,0)、B(0,-3).
(1)求直线l的函数关系式;
(2)利用函数图象写出当函数值y>0时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y=x与抛物线y=
1
2
x2交于A、B两点.
(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=
1
2
x2的函数值为y2.若y1>y2,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德宏州)如图,已知直线y=x与抛物线y=
1
2
x2
交于A、B两点.
(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=
1
2
x2
的函数值为y2.若y1>y2,求x的取值范围;
(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知直线y=2x+2交y轴于点A,交x轴于点B,直线l:y=-3x+9
(1)求经过A、B、C三点的抛物线的函数关系式,并指出此函数的函数值随x的增大而增大时,x的取值范围;
(2)若点E在(1)中的抛物线上,且四边形ABCE是以BC为底的梯形,求梯形ABCE的面积;
(3)在(1)、(2)的条件下,过E作直线EF⊥x轴,垂足为G,交直线l于F.在抛物线上是否存在点H,使直线l、FH和x轴所围成的三角形的面积恰好是梯形ABCE面积的
12
?若存在,求点H的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数的图象经过点A,B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0)
(1)求该反比例函数的解析式;
(2)求直线BC的解析式;
(3)当x为何值时,一次函数的函数值大于反比例函数的值.

查看答案和解析>>

同步练习册答案