精英家教网 > 初中数学 > 题目详情

已知:如图,在正方形ABCD中,点E为AB的中点,点F为AD上一点,且AF=AD.试说明△FEC是直角三角形.

答案:
解析:

  分析:只要说明△FEC的三边满足其中两边的平方和等于第三边的平方即可.

  解:设正方形的边长为4a,

  则AE=EB=2a,AF=a,FD=3a.

  在Rt△AEF中,EF2=a2+(2a)2=5a2;

  在Rt△BCE中,CE2=(2a)2+(4a)2=20a2;

  在Rt△CDF中,CF2=(3a)2+(4a)2=25a2.

  因为CF2=CE2+EF2,所以△FEC是直角三角形.

  点评:在只知道边的条件下,若要判断一个三角形是不是直角三角形,常运用勾股定理的逆定理.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD中,E是CB延长线上一点,EB=
12
BC,如果F是AB的中点,请你在正方形ABCD上找一点,与F点连接成线段,并说明它和AE相等的理由.
解:连接
 
,则
 
=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为
2

③EB⊥ED;
④S△APD+S△APB=1+
6

⑤S正方形ABCD=4+
6
.其中正确结论的序号是(  )
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.△ADQ与△QCP是否相似?
为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在正方形ABCD中,AB=8,点E在边AB上点,CE的垂直平分线FP 分别交AD精英家教网、CE、CB于点F、H、G,交AB的延长线于点P.
(1)求证:△EBC∽△EHP;
(2)设BE=x,BP=y,求y与x之间的函数解析式,并写出定义域;
(3)当BG=
74
时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.
(1)线段AF与BE有何关系.说明理由;
(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.

查看答案和解析>>

同步练习册答案