【题目】如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中点处.
(1)求景点B,E之间的距离;
(2)求景点B,A之间的距离.(结果保留根号)
【答案】(1)1000(米);(2)500(﹣1)(米).
【解析】
(1)根据已知条件得到∠C=90°,∠CBD=60°,∠CAE=45°,解直角三角形即可得到结论;
(2)过E作EF⊥AB与F,在Rt△AEF中,求得EF,在Rt△BEF中,求得BF,于是得到结论.
(1)由题意得,∠C=90°,∠CBD=60°,∠CAE=45°,
∵CD=1000,
∴BC= =1000,
∴BD=2BC=2000,
∵E在BD的中点处,
∴BE=BD=1000(米);
(2)过E作EF⊥AB与F,
在Rt△AEF中,EF=AF=BEsin60°=1000×=500,
在Rt△BEF中,BF=BEcos60°=500,
∴AB=AF﹣BF=500(﹣1)(米).
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C.
(1)写出抛物线顶点D的坐标 ;
(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;
(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.
(1)求证:BD是⊙O的切线;
(2)若AB=12,DB=5,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程的两个根是2和4,则方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,则c ;
(2)若是“倍根方程”,求代数式的值;
(3)若方程是倍根方程,且不同的两点M(k+1,5),N(3-k,5)都在抛物线上,求一元二次方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个口袋中有4个完全相同的小球,把它们分别标上数字﹣1,0,1,2,随机的摸出一个小球记录数字然后放回,在随机的摸出一个小球记录数字.求下列事件的概率:
(1)两次都是正数的概率P(A);
(2)两次的数字和等于0的概率P(B).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王叔叔家是养猪专业户,他们养的藏香猪和土黑猪一直很受市民欢迎.小王今年10月份开店卖猪肉,已知藏香猪肉售价每斤元,土黑猪肉售价每斤元,每天固定从叔叔家进货两种猪肉共斤并且能全部售完.
(1)若每天销售总额不低于元,则每天至少销售藏香猪肉多少斤?
(2)小王发现10月份每天上午就能将猪肉全部售完,而且消费者对猪肉的评价很高.于是小王决定调整猪肉价格,并增加进货量,且能将猪肉全部销售完.他将藏香猪肉的价格上涨,土黑猪肉的价格下调,销量与(1)中每天获得最低销售总额时的销量相比,藏香猪肉销量下降了,土黑猪肉销量是原来的倍,结果每天的销售总额比(1)中每天获得的最低销售总额还多了元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是( )
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学报名参加学校运动会,有以下4个项目可供选择:
径赛项目:100m,200m,分别用、、表示;
田赛项目:立定跳远用B表示.
小明从4个项目中任选一个,恰好是径赛项目的概率为______;
小明从4个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com