九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.
第一学习小组发现:如图(1),点A、点B在直线l
1上,点C、点D在直线l
2上,若l
1∥l
2,则S
△ABC=S
△ABD;反之亦成立.
第二学习小组发现:如图(2),点P是反比例函数
上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.
请利用上述结论解决下列问题:
(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S
△BDF=
2 .
(2)如图(4),点P、Q在反比例函数
图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S
△PQG=8,则S
△POH=
2 ,k=
﹣4 .
(3)如图(5)点P、Q是第一象限的点,且在反比例函数
图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.