精英家教网 > 初中数学 > 题目详情
如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在△BED中作BD边上的高,垂足为F;
(3)若△ABC的面积为60,BD=6,则△BDE中BD边上的高为多少?(请写出解题的必要过程)
(4)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代数式表示)
分析:(1)根据三角形内角与外角的性质解答即可;
(2)过E作BC边的垂线即可;
(3)过A作BC边的垂线AG,再根据三角形中位线定理求解即可;
(4)由平行和三角形的中线的性质可得S△BDE=S△CDE=
1
2
S△ABD=
1
4
S△ABC,从而求得S△EOD
解答:解:(1)∵∠BED是△ABE的外角,
∴∠BED=∠ABE+∠BAD=15°+40°=55°;

(2)过E作BC边的垂线,F为垂足,则EF为所求;

(3)过A作BC边的垂线AG,
∵AD为△ABC的中线,BD=6,
∴BC=2BD=2×6=12,
∵△ABC的面积为60,
1
2
BC•AG=46,即
1
2
×12AG=60,解得AG=10,
∵EF⊥BC于F,
∴EF∥AG,
∵E为AD的中点,
∴EF是△AGD的中位线,
∴EF=
1
2
AG=
1
2
×10=5;

(4)∵EG∥BC,AD为△ABC的中线,
∴S△BDE=S△CDE=
1
2
S△ABD=
1
4
S△ABC=
1
4
m,
∴S△EOD=S△CDE-S△COD=
1
4
m-n.
点评:本题涉及到三角形外角的性质、三角形中位线定理及三角形的面积公式,同时考查了三角形的中线将三角形分成两个三角形,它们的面积等于原三角形面积的一半的知识,涉及面较广,但难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在点C′的位置,BC=4,求BC′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,BE为△ABD的中线.
(1)在△BED中作BD边上的高,垂足为F;
(2)若△ABC的面积为20,BD=5.
①△ABD的面积为
 

②求△BDE中BD边上的高EF的长;
(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度数;
(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少.

查看答案和解析>>

同步练习册答案