精英家教网 > 初中数学 > 题目详情
如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于A(-3,1),B(2,n)两点,直线AB分别交x轴、y轴于D,C两点.
(1)求出m和n的值.
(2)求一次函数的解析式;
(3)求
AD
CD
的值.
(1)把A(-3,1),代入y=
m
x
得:
m=-3,
∴y=-
3
x

把B(2,n)代入y=-
3
x
得:
n=-
3
2


(2)把A(-3,1),B(2,-
3
2
)的坐标分别代入y=kx+b得:
1=-3k+b
-
3
2
=2k+b

解得:
k=-
1
2
b=-
1
2

∴y=-
1
2
x-
1
2


(3)过A作AE⊥OD,
∵A(-3,1),
∴OE=3,AE=1,
由(2)知:y=-
1
2
x-
1
2

∴直线和x轴交点D的坐标为:(-1,0),和y轴交点的坐标C为(0,-
1
2
),
∴OD=1,
∵DE=OE-OD=2,
∴AD=
AE2+DE2
=
5

∵DC=
OD2+OC2
=
5
2

AD
CD
=
5
5
2
=2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一个面积为2的直角三角形的两直角边分别是x,y,则y与x之间的关系用图象表示大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平行于直线y=x的直线l不经过第四象限,且与函数y=
3
x
(x>0)和图象交于点A,过点A作AB⊥y轴于点B,AC⊥x轴于点C,四边形ABOC的周长为8.求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l与双曲线交于A、C两点,将直线l绕点O顺时针旋转a度角(0°<a≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知质量一定的某物体的体积V(m3)是密度ρ(kg/m3)的反比例函数,其图象如图所示:
(1)请写出该物体的体积V与密度ρ的函数关系式;
(2)当该物体的密度ρ=3.2Kg/m3时,它的体积v是多少?
(3)如果将该物体的体积控制在10m3~40m3之间,那么该物体的密度应在什么范围内变化?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:
若a,b都是非负实数,则a+b≥2
ab
.当且仅当a=b时,“=”成立.
证明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.当且仅当a=b时,“=”成立.
举例应用:
已知x>0,求函数y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x•
2
x
=4.当且仅当2x=
2
x
,即x=1时,“=”成立.
当x=1时,函数取得最小值,y最小=4.
问题解决:
汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,双曲线y=
5
x
在第一象限的一支上有一点C(1,5),过点C的直线y=-kx+b(k>0)与x轴交于点A(a,0)、与y轴交于点B.
(1)求点A的横坐标a与k之间的函数关系式;
(2)当该直线与双曲线在第一象限的另一交点D的横坐标是9时,求△COD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y1=
k
x
和一次函数y2=ax+1的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数的图象与x轴相交于点C,求线段AC的长度.
(3)直接写出:当y1>y2>0时,x的取值范围.
(4)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出p点坐标;若不存在,请说明理由.(要求至少写两个)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比例函数y=
k
x
的图象与边BC交于点E,与边CD交于点F.已知BE:CE=3:1,则DF:FC等于(  )
A.4:1B.3:1C.2:1D.1:1

查看答案和解析>>

同步练习册答案