如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考:
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α。
当α= 度时,点P到CD的距离最小,最小值为 。
探究一:
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 度,此时点N到CD的距离是 。
探究二:
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转。
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的最大值。
思考:90,2;探究一:∠BMO=30度,此时点N到CD的距离是 2探究二:(1)90°(2)120°
【解析】∵MN=8,
∴OP=4,
∴点P到CD的距离最小值为:6﹣4=2.
故答案为:90,2; ………………………………2分
探究一:
∵以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止。
∵MN=8,MO=4,ON=4,
∴点N到CD的距离是6﹣4=2
∴得到最大旋转角∠BMO=30度,此时点N到CD的距离是 2;……………………………6分
探究二
(1)由已知得出M与P的距离为4,
∴PM⊥AB时,点P到AB的最大距离是4,从而点P到CD的最小距离为6﹣4=2,
当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切,
此时旋转角最大,∠BMO的最大值为90°; ……………………………… 9分
(2)如图,由探究一可知,点P是弧MP与CD的切线时,α大到最大,即OP⊥CD,此时延长PO交AB于点H,α最大值为∠OMH+∠OHM=30°+90°=120°。
……………………………12分
根据两平行线之间垂线段最短,以及切线的性质定理,直接得出答案;
探究一:根据由MN=8,MO=4,OY=4,得出UO=2,即可得出得到最大旋转角∠BMO=30度,此时点N到CD的距离是 2;
探究二:(1)由已知得出M与P的距离为4,PM⊥AB时,点MP到AB的最大距离是4,从而点P到CD的最小距离为6﹣4=2,即可得出∠BMO的最大值;
(2)分别求出α最大值为∠OMH+∠OHM=30°+90°以及最小值α=2∠MOH,即可得出α的取值范围.
科目:初中数学 来源: 题型:
BD | AC |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com