精英家教网 > 初中数学 > 题目详情
7.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的销售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克)50607080
销售量y(千克)100908070
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

分析 (1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.
(2)根据想获得4000元的利润,列出方程求解即可;
(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.

解答 解:
(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得
$\left\{\begin{array}{l}{50k+b=100}\\{60k+b=90}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-1}\\{b=150}\end{array}\right.$.
故y与x的函数关系式为y=-x+150;
(2)根据题意得
(-x+150)(x-20)=4000,
解得x1=70,x2=100>90(不合题意,舍去).
故该批发商若想获得4000元的利润,应将售价定为70元;
(3)w与x的函数关系式为:
w=(-x+150)(x-20)
=-x2+170x-3000
=-(x-85)2+4225,
∵-1<0,
∴当x=85时,w值最大,w最大值是4225.
∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.

点评 本题考查二次函数的应用,难度较大,解答本题的关键是根据题意列出方程,另外要注意掌握二次函数的最值的求法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.已知方程x2+2kx+k2-2k+1=0有两个实数根x1,x2
(1)求实数k的取值范围;
(2)若x12+x22=4,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.快递公司2014年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2016年的快递业务量达到3.92亿件.若设该地区这两年快递业务量的年平均增长率为x,则下列方程正确的是(  )
A.2(1-x)2=3.92B.3.92(1-x)2=2C.2(1+x)2=3.92D.3.92(1+x)2=2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于(  )
A.$\frac{2016π}{2}$B.$\frac{2016π}{3}$C.$\frac{2016π}{4}$D.$\frac{2016π}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知一组数据x1,x2,x3,x4,x5的方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知反比例函数y=$\frac{k}{x}$ 的图象过点A(3,1).
(1)求反比例函数的解析式;
(2)若一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:($\frac{{x}^{2}-4x+3}{x-3}$-$\frac{1}{3-x}$)($\frac{{x}^{2}-2x+1}{{x}^{2}-3x+2}$-$\frac{2}{x-2}$),其中x=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为8$\sqrt{13}$π.

查看答案和解析>>

同步练习册答案