精英家教网 > 初中数学 > 题目详情
在△ABC中,∠A=2∠B,AC=2.5,BC=4.D为射线BA上一点,D点到直线AC、BC的距离相等.则AD的长为
 
考点:角平分线的性质
专题:分类讨论
分析:分D在线段AB上和D在线段BA的延长线上两种情况,分别构造三角形全等,再结合等腰三角形的性质,可求得答案.
解答:解:当点D在线段AB上时,如图1,

在CB上取点E,使CE=CA,
∵D到AC和BC的距离相等,
∴CD平分∠ACB,
∴∠ACD=∠ECD,
在△ACD和△ECD中
CA=CE
∠ACD=∠ECD
CD=CD

∴△ACD≌△ECD(SAS),
∴CE=AC=2.5,AD=DE,∠A=∠CED=2∠B,
又∠CED=∠B+∠EDB,
∴∠B=∠EDB,
∴BE=ED,
∴AD=BE=BC-CE=4-2.5=1.5;
当点D不在线段AB上时,在图1的基础上,在射线BA上取点D′,连接CD′,在线段AD′上取点H,使AC=AH,

则∠CAB=2∠CHA=2∠B,
∴∠B=∠CHA,
∴CH=CB=4,且AD=1.5,
又CD′平分∠FCA,
∴∠D′CD=90°,
∵∠HCD=∠HCA+∠ACD=∠CHA+∠DCB=∠B+∠DCB=∠HDC,
∴HD=HC=4
∵∠HDC+∠HD′C=90°,
∴∠HD′C=∠HCD′,
∴HD′=HC=4,
∴AD′=AH+HD′=2.5+4=6.5,
综上可知AD的长为1.5或6.5,
故答案为:1.5或6.5.
点评:本题主要考查角平分线的判定和全等三角形的判定和性质,掌握到角两边的距离的点在角的平分线上是解题的关键,注意分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若m+n=2,mn=1,则m2+n2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

甲、乙丙三人进行射击测试,每人10次射击成绩的平均数均为9.3环,方差分别为
S
2
=0.55,
S
2
=0.47,
S
2
=0.62,则三人射击成绩最稳定的是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

-
2
3
π,-0.01,-3
1
2
,4
3
3-27
5
16
,0中,无理数有(  )个.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠EDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:2sin30°-(-
1
3
)-2+(
2
)0-
38
+(-1)2012

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点B(2,-4)在函数y=3x-b的图象上.
(1)求b的值;
(2)求此函数图象与x轴、y轴的交点坐标;
(3)画出此函数的图象;
(4)试判断点C(-2,3)是否在该函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:(a+
1
2
b)(a-
1
2
b)-(3a-2b)(2b+3a).

查看答案和解析>>

同步练习册答案