精英家教网 > 初中数学 > 题目详情
(2012•长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
分析:(1)先根据圆周角定理得出∠ABC的度数,再直接根据三角形的内角和定理进行解答即可;
(2)连接OB,由等边三角形的性质可知,∠OBD=30°,根据OB=8利用直角三角形的性质即可得出结论.
解答:(1)证明:在△ABC中,
∵∠BAC=∠APC=60°,
又∵∠APC=∠ABC,
∴∠ABC=60°,
∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,
∴△ABC是等边三角形;

(2)解:连接OB,
∵△ABC为等边三角形,⊙O为其外接圆,
∴O为△ABC的外心,
∴BO平分∠ABC,
∴∠OBD=30°,
∴OD=8×
1
2
=4.
点评:本题考查了圆周角定理、等边三角形的判定,垂径定理,解直角三角形等知识,将各知识点有机结合,旨在考查同学们的综合应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•长沙)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.
(1)求证:△BDG∽△DEG;
(2)若EG•BG=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长沙)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长沙)如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=
105
105
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长沙)如图半径分别为m,n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴,y轴分别切于点M,点N,⊙O2与x轴,y轴分别切于点R,点H.
(1)求两圆的圆心O1,O2所在直线的解析式;
(2)求两圆的圆心O1,O2之间的距离d;
(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2
试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为
|s1-s2|
2
d
的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案