精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE:S四边形AOCE=1:3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

【答案】分析:(1)因为S△FAE:S四边形AOCE=1:3,所以可得S△FAE:S△FOC=1:4,利用四边形AOCB是正方形,可得AB∥OC,△FAE∽△FOC,利用相似三角形的面积比等于相似比的平方,可得到AE:OC=1:2,结合正方形的边长即可求出AE=3,所以点E的坐标是(3,6);
(2)可设直线EC的解析式是y=kx+b,因为直线y=kx+b过E(3,6)和C(6,0),利用待定系数法即可求出直线EC的解析式.
解答:解:(1)∵S△FAE:S四边形AOCE=1:3,
∴S△FAE:S△FOC=1:4,
∵四边形AOCB是正方形,
∴AB∥OC,
∴△FAE∽△FOC,
∴AE:OC=1:2,
∵OA=OC=6,
∴AE=3,
∴点E的坐标是(3,6).

(2)设直线EC的解析式是y=kx+b,
∵直线y=kx+b过E(3,6)和C(6,0),
,解得:
∴直线EC的解析式是y=-2x+12.
点评:本题需利用待定系数法和相似三角形的性质来解决问题,另外本题也是一道综合性较强的题目,解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案