精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为,点B的坐标为,点C在第一象限,对角线BDx轴平行直线x轴、y轴分别交于点E将菱形ABCD沿x轴向左平移m个单位,当点D落在的内部时不包括三角形的边m的值可能是  

A. 3 B. 4 C. 5 D. 6

【答案】C

【解析】

根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到MN上时的x的值,从而得到m的取值范围.

∵菱形ABCD的顶点A(2,0),点B(1,0),

∴点D的坐标为(4,1),

当y=1时,x+3=1,

解得x=-2,

∴点D向左移动2+4=6时,点D在EF上,

∵点D落在△EOF的内部时(不包括三角形的边),

∴4<m<6.

m的值可能是5.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC会平行吗?说明理由

(2)ADBC的位置关系如何?为什么?

(3)BC平分∠DBE?为什么

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一矩形纸片OABC放在平面直角坐标系中,.动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).

(1)OP =____________, OQ =____________;(用含t的代数式表示)

(2)当时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.

①求点D的坐标;

②如果直线y = kx + b与直线AD平行,那么当直线y = kx + b与四边形PABD有交点时,求b 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板放在同一平面内,使直角顶点重合于点O

(1)如图①,若∠AOB=155°,求∠AOD、BOC、DOC的度数.

(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.

(3)如图②,当AOCBOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与直线y= x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3, ).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.

(1)求抛物线的解析式;
(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.
(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC=90°,C=30°,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点DDFBC于点F.

(I)试用含t的式子表示AE、AD、DF的长;

(Ⅱ)如图①,连接EF,求证:四边形AEFD是平行四边形;

(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,BD平分∠ABC,CE平分∠ACB的邻补角∠ACM,若∠BDC=130°,∠E=50°,则∠BAC的度数是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为( )

A.(3,1)
B.(1,3)
C.(3,﹣1)
D.(1,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组 无解,且使关于x的分式方程 =﹣1有整数解,那么这5个数中所有满足条件的a的值之和是(
A.﹣2
B.﹣3
C.-
D.

查看答案和解析>>

同步练习册答案