精英家教网 > 初中数学 > 题目详情
如图,在航线L的两侧分别有观测点A和B,点A到航线L的距离为2km,点B位于点A北偏东60°方向且与A相距5km处。现有一艘轮船正沿该航线自西向东航行,在C点观测到点A位于南偏东54°方向,航行10分钟后,在D点观测到点B位于北偏东70°方向。

小题1:(1)求观测点B到航线L的距离;
小题2:(2)求该轮船航线的速度(结果精确到0.1km/h,参考数据:,sin54°="0.81 " cos54°=0.59,tan54°=1.38,sin70°=0.94,cos70°=0.34,tan70°=2.75)

小题1:(1)设AB与l交于点O.
在Rt△AOD中,
∵∠OAD=60°,AD=2,
∴OA= =4.
∵AB=10,
∴OB=AB-OA=6.
在Rt△BOE中,∠OBE=∠OAD=60°,
∴BE=OB•cos60°=3.
∴观测点B到航线l的距离为3km
小题2:(2)在Rt△AOD中,OD=AD•tan60°=2
在Rt△BOE中,OE=BE•tan60°=3
∴DE=OD+OE=5
在Rt△CBE中,∠CBE=76°,BE=3,
∴CE=BE•tan∠CBE=3tan76°.
∴CD=CE-DE=3tan76°-5≈3.38.
∵5min=
=12CD=12×3.38≈40.6(km/h).
答:该轮船航行的速度约为40.6km/h
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图(1),由直角三角形边角关系,可将三角形面积公式变形,
即: =AB·CD,

在Rt中,

=bc·sin∠A.
即 三角形的面积等于两边之长与夹角正弦之积的一半.
如图(2),在ABC中,CD⊥AB于D,∠ACD=α, ∠DCB=β.
, 由公式①,得
AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ,
即 AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ
请你利用直角三角形边角关系,消去②中的AC、BC、CD,只用的正弦或余弦函数表示(直接写出结果).
小题1:(1)______________________________________________________________
小题2:(2)利用这个结果计算:=_________________________

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是河堤的横断面,堤高BC=5米,迎水坡AB的坡比1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是           米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在一个坡角为20º的斜坡上方有一棵树,高为AB,当太阳光线与水平线成52º角时,测得该树在斜坡上的树影BC的长为10m,求树高AB(精确到0.1m).
(已知:sin20º≈0.342,cos20º≈0.940,tan20º≈0.364,sin52º≈0.788,cos52º≈0.616,tan52º≈1.280)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

.如图,一辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了        米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,甲、乙两盏路灯相距20米. 一天晚上,当小明从路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为          米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正方形网格中,∠AOB如图放置,则cos∠AOB的值为
A.B.
C.D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分8分)先阅读读短文,再解答短文后面的问题:
在几何学中,通常用点表示位置,用线段的长度表示两点间的距离,用一条射线表示一个方向。在线段的两个端点中(如图),如果我们规定一个顺序:为始点,为终点,我们就说线段具有射线的方向,线段叫做有向线段,记作,线段的长度叫做有向线段的长度(或模),记作
有向线段包含三个要素:始点、方向和长度,知道了有向线段的始点,它的终点就被方向和长度一确定。解答下列问题:

小题1:(1)在平面直角坐标系中画出有向线段(有向线段与轴的长度单位相同),轴的正半轴的夹角是,且与轴的正半轴的夹角是
小题2:(2)若的终点的坐标为(3,),求它的模及它与轴的正半轴的夹角 的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

.如图,三个村庄ABC之间的距离分别为AB=5km,BC=12km,AC=13km.要从B修一
条公路BD直达AC.已知公路的造价为26000元/km,求修这条公路的最低造价是多少?
 
     

查看答案和解析>>

同步练习册答案