精英家教网 > 初中数学 > 题目详情
7.计算:(4x+4$\sqrt{xy}$+y)÷(2$\sqrt{x}$+$\sqrt{y}$)

分析 先利用完全平方公式变形,然后进行约分即可.

解答 解:原式=[(2$\sqrt{x}$)2+2$\sqrt{x}$•$\sqrt{y}$+($\sqrt{y}$)2]÷(2$\sqrt{x}$+$\sqrt{y}$)
=(2$\sqrt{x}$+$\sqrt{y}$)2÷(2$\sqrt{x}$+$\sqrt{y}$)
=2$\sqrt{x}$+$\sqrt{y}$.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.观察下列一组等式的化简.然后解答后面的问题:
$\frac{1}{\sqrt{2}+1}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{1×(\sqrt{4}-\sqrt{3})}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=2-$\sqrt{3}$…
(1)在计算结果中找出规律$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$(n表示大于0的自然数)
(2)通过上述化简过程,可知 $\sqrt{11}$-$\sqrt{10}$<$\sqrt{12}$-$\sqrt{10}$(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知△ABC,AC=BC=6,∠C=90°,O是AB的中点,⊙O与AC相切于点D,与BC相切于点E.⊙O交OB于F,连接DF并延长交CB的延长线于G.
(1)求证:∠BFG=∠G;
(2)求EG的长;
(3)求由DG,GE和$\widehat{ED}$所围成图形的面积(阴影面积).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,过点C作CF⊥BC,如果点D,E分别在BC、CF上运动,并始终保持DE=EC,那么当CD=6或8时,△ABC与△DCE全等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知抛物线y=a(x-1)2+k经过点(2,-7),(3,-13).
(1)求a,k的值;
(2)写出该抛物线的开口方向及顶点坐标;
(3)当x取何值时,y随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知函数y=mx2-6x+1(m是常数).
(1)当该函数的图象与x轴有两个公共点时,求m的取值范围.并求m为最大整数时,方程mx2-6x+1=0(m是常数)的两根;
(2)若该函数的图象与x轴只有一个公共点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.设方程x2-8x+4=0的两根分别是x1、x2,不解方程试求下列各式的值.
(1)$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$;
(2)${{x}_{1}}^{2}$+${{x}_{2}}^{2}$;
(3)$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若单项式2ax-2yb3与-3a3b2x-y是同类项,则x+y的值是0.

查看答案和解析>>

同步练习册答案