【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.
(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
【答案】(1), , (2)存在P的坐标是或(3)当EF最短时,点P的坐标是:(, )或(, )
【解析】试题分析:(1)根据题意得出答案;(2)分以点C为直角顶点和点A为直角顶点两种情况分别进行计算;两种情况都根据等腰直角三角形的性质得出点的坐标;(3)根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短,根据OC=OA=3,OD⊥AC得出 D是AC的中点,从而得出点P的纵坐标,然后根据题意得出方程,从而求出点P的坐标.
试题解析:(1),, (-1,0).
(2)存在.
第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.
∵OA=OC,∠AOC =90° ∴∠OCA=∠OAC=45°. ∵∠ACP1=90°, ∴∠MCP1=90°-45°=45°=∠C P1M.
∴MC=MP1. 由(1)可得抛物线为.
设,则, 解得:(舍去),.
∴. 则P1的坐标是.
第二种情况,当以A为直角顶点时,过点A作AP2⊥AC,交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP2交y轴于点F. ∴P2N∥x轴.由∠CAO=45°, ∴∠OAP2=45°. ∴∠FP2N=45°,AO=OF=3.
∴P2N=NF. 设,则. 解得:(舍去),.
∴, 则P2的坐标是.
综上所述,P的坐标是或
(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.
根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短. 由(1)可知,在Rt△AOC中,
∵OC=OA=3,OD⊥AC, ∴ D是AC的中点. 又∵DF∥OC, ∴.
∴点P的纵坐标是则, 解得:.
∴当EF最短时,点P的坐标是:(,)或(,).
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是的中点,点P在AB的延长线上,且PC与⊙O相切于点C,过点C作CD⊥AB,垂足为D,CD 与BG交于E.
(1)求证:①PC//BG;②;
(2)若弧AG的度数为60°,且⊙O的半径为2,试求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,D是弧AB上一点,C是弧AD的中点,过点C作AB的垂线,交AB
于E,与过点D的切线交于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①
∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是_______(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com