ÔĶÁÏÂÁвÄÁÏ£º
¹ØÓÚxµÄ·½³Ì£ºµÄ½âÊÇx1=c£¬£»£¨¼´£©µÄ½âÊÇx1=c£»µÄ½âÊÇx1=c£¬£»µÄ½âÊÇx1=c£¬£»¡­
£¨1£©Çë¹Û²ìÉÏÊö·½³ÌÓë½âµÄÌØÕ÷£¬±È½Ï¹ØÓÚxµÄ·½³ÌÓëËüÃǵĹØϵ£¬²ÂÏëËüµÄ½âÊÇʲô£¿²¢ÀûÓá°·½³ÌµÄ½â¡±µÄ¸ÅÄî½øÐÐÑéÖ¤£®
£¨2£©ÓÉÉÏÊöµÄ¹Û²ì¡¢±È½Ï¡¢²ÂÏë¡¢ÑéÖ¤£¬¿ÉÒԵóö½áÂÛ£º
Èç¹û·½³ÌµÄ×ó±ßÊÇδ֪ÊýÓëÆäµ¹ÊýµÄ±¶ÊýµÄºÍ£¬·½³ÌµÄÓұߵÄÐÎʽÓë×ó±ßÍêÈ«Ïàͬ£¬Ö»ÊÇ°ÑÆäÖеÄδ֪Êý»»³ÉÁËij¸ö³£Êý£¬ÄÇôÕâÑùµÄ·½³Ì¿ÉÒÔÖ±½ÓµÃ½â£¬ÇëÓÃÕâ¸ö½áÂÛ½â¹ØÓÚxµÄ·½³Ì£º£®
¡¾´ð°¸¡¿·ÖÎö£º´ËÌâΪÔĶÁ·ÖÎöÌ⣬½â´ËÌâҪעÒâÈÏÕæÉóÌ⣬ÕÒµ½¹æÂÉ£ºx+=c+µÄ½âΪx1=c£¬x2=£¬¾Ý¹æÂɽâÌâ¼´¿É£®
½â´ð£º½â£º£¨1£©²ÂÏëµÄ½âÊÇx1=c£¬x2=£®
ÑéÖ¤£ºµ±x=cʱ£¬·½³Ì×ó±ß=c+£¬·½³ÌÓÒ±ß=c+£¬
¡à·½³Ì³ÉÁ¢£»
µ±x=ʱ£¬·½³Ì×ó±ß=+c£¬·½³ÌÓÒ±ß=c+£¬
¡à·½³Ì³ÉÁ¢£»
¡àµÄ½âÊÇx1=c£¬x2=£»

£¨2£©Óɵã¬
¡àx-1=a-1£¬£¬
¡àx1=a£¬x2=£®
µãÆÀ£º½â´ËÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ÈÏÕæÉóÌ⣬ѰÕÒ¹æÂÉ£ºx+=c+µÄ½âΪx1=c£¬x2=£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x-
1
x
=c-
1
c
£¨¼´x+
-1
x
=c+
-1
c
£©µÄ½âÊÇx1=cx2=-
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x+
3
x
=c+
3
c
µÄ½âÊÇx1=c£¬x2=
3
c
£»¡­
£¨1£©Çë¹Û²ìÉÏÊö·½³ÌÓë½âµÄÌØÕ÷£¬±È½Ï¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
(m¡Ù0)
ÓëËüÃǵĹØϵ£¬²ÂÏëËüµÄ½âÊÇʲô£¿²¢ÀûÓá°·½³ÌµÄ½â¡±µÄ¸ÅÄî½øÐÐÑéÖ¤£®
£¨2£©ÓÉÉÏÊöµÄ¹Û²ì¡¢±È½Ï¡¢²ÂÏë¡¢ÑéÖ¤£¬¿ÉÒԵóö½áÂÛ£º
Èç¹û·½³ÌµÄ×ó±ßÊÇδ֪ÊýÓëÆäµ¹ÊýµÄ±¶ÊýµÄºÍ£¬·½³ÌµÄÓұߵÄÐÎʽÓë×ó±ßÍêÈ«Ïàͬ£¬Ö»ÊÇ°ÑÆäÖеÄδ֪Êý»»³ÉÁËij¸ö³£Êý£¬ÄÇôÕâÑùµÄ·½³Ì¿ÉÒÔÖ±½ÓµÃ½â£¬ÇëÓÃÕâ¸ö½áÂÛ½â¹ØÓÚxµÄ·½³Ì£ºx+
2
x-1
=a+
2
a-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÀí½âÌ⣺ÔĶÁÏÂÁвÄÁÏ£¬¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»
x-
1
x
=c-
1
c
£¨¼´x+
-1
x
=c+
-1
c
£©µÄ½âÊÇx1=c£¬x2=-
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇ£ºx1=c£¬x2=
2
c
£¬¡­
£¨1£©¹Û²ìÉÏÊö·½³Ì¼°Æä½âµÄÌØÕ÷£¬Ö±½Óд³ö¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
£¨m¡Ù0£©µÄ½â£¬²¢ÀûÓá°·½³ÌµÄ½â¡±µÄ¸ÅÄî½øÐÐÑéÖ¤£»
£¨2£©Í¨¹ý£¨1£©µÄÑéÖ¤Ëù»ñµÃµÄ½áÂÛ£¬ÄãÄܽâ³ö¹ØÓÚxµÄ·½³Ì£ºx+
2
x-1
=a+
2
a-1
µÄ½âÂð£¿ÈôÄÜ£¬ÇëÇó³ö´Ë·½³ÌµÄ½â£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x+
3
x
=c+
3
c
µÄ½âÊÇx1=c£¬x2=
3
c
£»¡­
£¨1£©Çë¹Û²ìÉÏÊö·½³ÌÓë½âµÄÌØÕ÷£¬±È½Ï¹ØÓÚx+
m
x
=c+
m
c
£¨m¡Ù0£©ÓëËüÃǵĹØϵ£¬²ÂÏëËüµÄ½âÊÇʲô£¬²¢ÀûÓá°·½³ÌµÄ½â¡±µÄ¸ÅÄî½øÐÐÑéÖ¤£®
£¨2£©ÇëÓÃÕâ¸ö½áÂÛ½â¹ØÓÚxµÄ·½³Ì£ºx+
2
x-1
=a+
2
a-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x-
1
x
=c-
1
c
(¼´x+
-1
x
=c+
-1
c
)µÄ½âÊÇx1=c£¬x2=-
1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x+
3
x
=c+
3
c
µÄ½âÊÇx1=c£¬x2=
3
c
¡­
£¨1£©Çë¹Û²ìÉÏÊö·½³Ì½âµÄÌØÕ÷£¬±È½Ï¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
(m
¡Ù0£©ÓëËüÃǵĹØϵ£¬²ÂÏëËüµÄ½âÊÇ
x1=c£¬x2=
m
c
x1=c£¬x2=
m
c

£¨2£©ÀûÓÃÉÏÊö½áÂÛÇó¹ØÓÚxµÄ·½³Ìx+
2
x-1
=a+
2
a-1
µÄ½â£®£¨²»Òª½øÐмìÑ飩£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£¬¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=c+
1
c
µÄ½âÊÇx1=c£¬x2=
1
c
£»x-
1
x
=c-
1
c
µÄ½âÊÇx1=c£¬x2=
-1
c
£»x+
2
x
=c+
2
c
µÄ½âÊÇx1=c£¬x2=
2
c
£»x-
2
x
=c-
2
c
µÄ½âÊÇx1=c£¬x2=
-2
c
£»¡­
£¨1£©Í¨¹ýÒÔÉϹ۲죬±È½Ï¹ØÓÚxµÄ·½³Ìx+
m
x
=c+
m
c
ÓëËüµÄ¹Øϵ£¬²ÂÏëËüµÄ½âÊÇʲô£¿ÇëÀûÓ÷½³ÌµÄ½âµÄ¸ÅÄîÀ´ÑéÖ¤£®
£¨2£©Í¨¹ýÉÏÃæ·½³ÌµÄ¹Û²ì£¬±È½Ï¡¢Àí½â¡¢ÑéÖ¤£¬ÄãÄܽâ³ö¹ØÓÚxµÄ·½³Ìx+
2
x-1
=a+
2
a-1
µÄ½âÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸