精英家教网 > 初中数学 > 题目详情
(2013•武汉模拟)在⊙O中,AB为直径,PC为弦,且PA=PC
(1)如图1,求证:OP∥BC
(2)如图2,DE切⊙O于点C,DE∥AB,求tan∠A的值.
分析:(1)根据弧、弦、圆圆周角的关系以及等边对等角可以证得∠BCP=∠CPO,利用内错角相等,两直线平行即可证得;
(2)根据平行线的性质可以求得∠AOC的度数,然后利用圆周角定理即可求得∠PON=45度,则△OPN是等腰直角三角形,则可以利用圆的半径表示出PN与ON的长,然后在直角△APN中,根据正切函数的定义即可求解.
解答:证明:(1)连接OC.
∵PA=PC
∴弧PA=弧PC,
∴∠AOP=∠COP,
∵OA=OP,
∴∠A=∠APO,
同理,∠PCO=∠CPO,
∴∠A=∠CPO,
∵∠A=∠BCP,
∴∠BCP=∠CPO,
∴BC∥OP;

(2)连接OP,过P作PN⊥AB于点N.
∵DE为⊙O的切线,
∴OC⊥DE,
∴∠DCO=90°,
∵AB∥DE,
∴∠AOC+∠DCO=180°,
∴∠AOC=90°,
∴∠AOP=∠COP=135°.
∵∠AOP+∠BOP=180°,
∴∠BOP=45°,
∵PN⊥AB,
∴ON=PN=
2
2
OP,
∵AO=PO,
∴AN=(1+
2
2
)OP,
∴tanA=
PN
AN
=
2
2
OP
(1+
2
2
)OP
=
2
-1.
点评:本题考查了圆周角定理,三角函数的定义,正确作出辅助线,把求三角函数的问题转化成直角三角形的边的比是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A落在BC边上,落点为E,折痕交AB边交于点F;若BE:EC=m:n,则AF:FB=
m+n
n
m+n
n
(用含有m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)化简:(
a
a-b
-
b2
a2-ab
)÷
a2+2ab+b2
a
,当b=-2时,请你为a选择一个适当的值并代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)若x1,x2是一元二次方程x2-4x+3=0的两个根,则x1+x2的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)已知x1、x2是方程x2-
5
x+l=O的两根,则x1+x2的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,在⊙O中,半径OA⊥弦BC,∠AOB=50°,则圆周角∠ADC=
25°
25°

查看答案和解析>>

同步练习册答案