精英家教网 > 初中数学 > 题目详情
(2012•金平区模拟)如图,半圆O的直径AB=10,弦AC=8,过A作直线PQ,若∠PAC=∠ABC.
(1)求证:PQ是半圆O的切线;
(2)若点M从点C出发,沿线段CA向点A运动,N从点A出发,沿射线AP方向运动,两点同时出发,速度都为每秒1个单位长度,点M运动到A即停止,设运动时间为t秒.
①设△AMN的面积为S,求S与t之间的函数关系式,并求t为何值时,△AMN的面积最大,最大值是多少?
②当△AMN为等腰三角形时,求运动时间t的值.
分析:(1)欲证PQ是半圆O的切线,只需证明PQ⊥AB即可;
(2)①如图1,作ND⊥AC,垂足为D,构建相似三角形△NAD∽△ABC,根据相似三角形的对应边成比例知
ND
AC
=
NA
AB
,由此可以求得ND=
4
5
t;然后根据三角形的面积公式可以求得S与t之间的函数关系式;最后根据二次函数最值的求法来求,△AMN的面积的最大值;
②需要分类讨论:求当AN为底、AM为底、MN为底三种情况下的时间t的值.
解答:(1)证明:∵AB为半圆O的直径,
∴∠ACB=90°(直径所对的圆周角是直角),
∴∠ABC+∠BAC=90°(直角三角形的两个锐角互余),
∵∠PAC=∠ABC(已知),
∴∠PAB=∠PAC+∠BAC=90°(等量代换),
∴PQ⊥AB,
∴PQ是半圆O的切线;

(2)解:①如图1,作ND⊥AC,垂足为D,则∠ADN=90°,
∵AB是直径,
∴∠ACB=90°(直径所对的圆周角是直角),
∴∠ADN=∠ACB(等量代换);
∵∠PAC=∠ABC,即∠NAD=∠ABC,
∴△NAD∽△ABC,
ND
AC
=
NA
AB
(相似三角形的对应边成比例),
∵AB=10,AC=8,AN=CM=t,
ND
8
=
t
10

∴ND=
4
5
t,
∴S=
1
2
×AM×ND
=
1
2
×(8-t)×
4
5
t
=-
2
5
t2+
16
5
t
=-
2
5
(t-4)2+
32
5

∴当t=4时,△AMN的面积最大,最大值是
32
5
;                     

②在Rt△ABC中,BC=
AB2-AC2
=
102-82
=6,
∴cos∠CBA=
BC
AB
=
3
5

如图2,若MN=MA,作ME⊥AP,垂足为E,∴AE=
1
2
AN=
1
2
t

在Rt△AEN中,cos∠MAE=
AE
AM
=cos∠CBA=
3
5

1
2
t
8-t
=
3
5

t=
48
11

如图3,若AN=NM,作NF⊥AC,垂足为F,则AF=
1
2
×AM=
1
2
×(8-t)=4-
1
2
t

在Rt△AFN中,cos∠NAF=
AF
AN
=cos∠CBA=
3
5

4-
1
2
t
t
=
3
5

t=
40
11

若AN=AM,有t=8-t,则t=4;       
故当△AMN为等腰三角形时,t的值为
40
11
、4或
48
11
点评:本题考查了圆的综合题:圆周角定理(直径所对的圆周角是直角)、勾股定理、三角形的面积公式、二次函数的最值的求法以及等腰三角形的性质等知识点的综合运用.注意:在解答(2)②题时,需要对等腰△AMN的底边进行分类讨论,以防漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•金平区模拟)如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S1=
1
4
1
4
,Sn=
n
2(n+1)
n
2(n+1)
(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)计算:
12
-(-
1
2
)0-cos30°+|
3
2
-2|

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数不小于22的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)如图,已知抛物线y=ax2+bx+2与x轴交于A(-4,0)、B(1,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)在抛物线的对称轴上是否存在点P,使△PBC的周长最小?若存在,请直接写出△PBC周长的最小值与点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案