精英家教网 > 初中数学 > 题目详情
17、在平行四边形ABCD中,BC=2AB,E为BC中点,则∠AED=
90°
分析:根据平行四边形的性质和已知推出AB=BE=AF=DF,AF=BE,AF∥BE,得到平行四边形AFEB,推出AF=BE=DF,根据直角三角形的判定求出即可.
解答:
解:取AD的中点F,连接EF,
∵平行四边形ABCD,BC=2AB,E为BC的中点,
∴AD∥BC,AD=BC=2AB=2BE=2AF=2DF,
∴AB=BE=AF=DF,
∴AF=BE,AF∥BE,
∴四边形AFEB是平行四边形,
∴EF=AB=AF=DF,
∴∠AED=90°.
故答案为:90°.
点评:本题主要考查对直角三角形斜边上的中线,平行四边形的性质和判定等知识点的理解和掌握,能求出AF=DF=EF是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知如图,在平行四边形ABCD中,BN=DM,BE=DF.求证:四边形MENF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山一模)在平行四边形ABCD中,∠DAB=60°,点E是AD的中点,点O是AB边上一点,且AO=AE,过点E作直线HF交DC于点H,交BA的延长线于F,以OE所在直线为对称轴,△FEO经轴对称变换后得到△F′EO,直线EF′交直线DC于点M.
(1)求证:AD∥OF′;
(2)若M点在点H右侧,OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE⊥AD交BD于点E,CF⊥BC交BD于点F.求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠B的平分线交AD于E,AE=10,ED=4,那么平行四边形ABCD的周长是
48
48

查看答案和解析>>

同步练习册答案