分析 ①方程组整理后,根据“整体代换”法,求出所求式子的值即可;
②先求得x+2y=5或x+2y=-5,再将$\frac{1}{x}$+$\frac{1}{2y}$变形整体代入即可求解.
解答 解:①$\left\{\begin{array}{l}{3{x}^{2}-2xy+12{y}^{2}=47(1)}\\{2{x}^{2}+xy+8{y}^{2}=36(2)}\end{array}\right.$,
由(1)得:3(x2+4y2)=47+2xy,即x2+4y2=$\frac{47+2xy}{3}$(3),
把(3)代入②得:2×$\frac{47+2xy}{3}$=36-xy,
解得:xy=2,
则x2+4y2=17;
②∵x2+4y2=17,
∴(x+2y)2=x2+4y2+4xy=17+8=25,
∴x+2y=5或x+2y=-5,
则$\frac{1}{x}$+$\frac{1}{2y}$=$\frac{x+2y}{2xy}$=±$\frac{5}{4}$.
点评 此题考查了解二元一次方程组,弄清“整体代入”方法是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x1=x2=5 | B. | x1=x2=-$\sqrt{5}$ | C. | x1=$\sqrt{5}$,x2=-$\sqrt{5}$ | D. | x=$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com