精英家教网 > 初中数学 > 题目详情

如图,Rt△ABO的顶点A是双曲线与直线在第二象限内的交点,AB⊥轴于点B,且 .

(1)求这两个函数的表达式;

(2)求直线与双曲线的两个交点A、C的坐标;

(3)求△AOC的面积.

 

【答案】

(1)

(2)A(-1,3)C(3,-1)

(3)4

【解析】

试题分析:(1),即,所以,又因为图象在二四象限,所以反比例函数的系数小于零,即,所以,将代入,所以

(2)两个函数的交点,即为A、C两点,将两道解析式结合,即,即,所以,将代入,得到,将代入,得到,即A(-1,3)C(3,-1)

(3)将代入中,得,即,所以

,所以

考点:函数图象与解析式的结合

点评:做此类题目时,一般先将定点代入解析式,求出未知系数。函数的交点,即为两个函数解析式的结合,由此可以求出自变量的值,再由自变量,求出对应的点

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2
+bx+c经过B点,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的顶点A是反比例函数y=
k
x
与一次函数y=-x+(k+1)的图精英家教网象在第四象限的交点,AB⊥x轴于B,且S△ABO=
5
2

(1)求这个反比例函数和一次函数的解析式;
(2)求这个一次函数的图象与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2+bx+c经过B点,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的顶点A是反比例函数y=
k
x
与一次函数y=-x-(k+1)的图象在第二象限的交点.AB⊥x轴于B,且S△ABO=
3
2

(1)求这两个函数的解析式;
(2)求两个函数图象的两个交点A,C的坐标和△AOC的面积;
(3)利用图象判断,当x为何值时,反比例函数的值小于一次函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABO的顶点A是双曲线y=
k
x
与直线y=-x+(k+1)在第四象限的交点,AB⊥x轴于B,且S△AOB=
3
2
,求这两个函数的解析式.

查看答案和解析>>

同步练习册答案