精英家教网 > 初中数学 > 题目详情
写出图中多边形ABCDEF各个顶点的坐标.
分析:根据平面直角坐标系的特点写出各点的坐标即可.
解答:解:根据直角坐标系的知识可得:A(-4,4)、B(-7,0)、C(-4,-4)、D(0,-4)、E(3,0)、F(0,4).
点评:此题考查了坐标与图形的性质,解答本题的关键是结合直角坐标系,仔细观察各点的坐标,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理解:
(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转
n
360
周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转
 
周;若AB=l,则⊙O自转
 
周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转
 
周;若∠ABC=60°,则⊙O在点B处自转
 
周;
(2)如图3,∠ABC=90°,AB=BC=
1
2
c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转
 
周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题】在正方形网格中,如图(一),△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).
(1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA′B′,放大后点A、B的对应点分别为A′、B′.画出△OA′B′,并写出点A'、B'的坐标:A′(
3
3
6
6
),B′(
6
6
-3
-3
);
(2)在(1)中,若点C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标(
3a
3a
3b
3b
);
【拓展】在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P'在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
【探索】如图(二),完成下列问题:
(3)填空:如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(
2
2
60°
60°
);
(4)如图2,△ABC是边长为3cm的等边三角形,将它作旋转相似变换A(
43
,90°)
,得到△ADE,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:解答题

如图所示①至图⑤,⊙O均做无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c。
 阅读理解:
(1)如图①,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图②,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周。
实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转____周;若AB=l,则⊙O自转___周,在阅读理解的(2)中,若∠ABC=120°, 则⊙O在点B处自转____周;若∠ABC=60°,则⊙O在点B 处自转 ____周;
(2)如图③,∠ABC= 90°,AB= BC=,⊙O从⊙O1的位置出发, 在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转了____周。
拓展联想:(1)如图④,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图⑤,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边 相切于点D的位置,直接写出⊙O自转的周数。

查看答案和解析>>

科目:初中数学 来源:河北省中考真题 题型:探究题

如图-1至图-5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理解:
(1)如图-1,⊙O从⊙O1的位置出发,沿AB滚动到 ⊙O2的位置,当AB = c时,⊙O恰好自转1周.
(2)如图-2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由 ⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2 = n°,⊙O在点B处自转周.
实践应用:
(1)在阅读理解的(1)中,若AB = 2c,则⊙O自转_____ 周;若AB = l,则⊙O自转_____ 周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B处自转_____ 周;若∠ABC = 60°,则⊙O 在点B处自转_____ 周.
(2)如图-3,∠ABC=90°,AB=BC=c.⊙O从 ⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转_____ 周.
 拓展联想:
(3)如图-4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由.
(4)如图-5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(79):3.4 弧长和扇形的面积,圆锥的侧面展开图(解析版) 题型:解答题

如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理解:
(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周;
(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转______周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.

查看答案和解析>>

同步练习册答案