精英家教网 > 初中数学 > 题目详情
如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中.

(1)操作发现(4分)
如图2,固定△ABC ,使△DEC绕点C旋转。当点D恰好落在AB边上时,填空:

线段DE与AC的位置关系是         
设△BDC的面积为,△AEC的面积为。则的数量关系是      
(2)猜想论证(4分)
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中的数量关系仍然成立,并尝试分别作出了△BDC,△AEC中边上的高,请你证明小明的猜想。
(1)DE∥AC;S1=S2;(2)证明见解析.

试题分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=
12AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.
试题解析:(1)①DE∥BC
理由如下:
∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=AB,
∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2
(2)如图,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
在△ACN和△DCM中,

∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2
考点: 1.全等三角形的判定与性质;2.平行线的判定;3.等边三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,并说明理由;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,△ABC的角平分线BD、CE相交于点P.
(1)如果∠A=70°,求∠BPC的度数;
(2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示);

①                   ②             ③            ④
在(2)的条件下,将直线MN绕点P旋转.
(ⅰ)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由;
(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是腰的垂直平分线,的度数是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

探究与发现:
(1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系
已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,
试探究∠P与∠A的数量关系,并说明理由.

图1                          图2                       图3
(2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系
已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并说明理由.
(3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系
已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:__     __          __

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=_  °

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(  )
A.B.25C.D.35

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC的三边分别为下列各组值, 其中不是直角三角形三边的是(    )
A.a="41," b="40," c="9" B.a="1.2," b="1.6," c=2
C.a=, b=, c=D.a=, b=, c=1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为(  )

A.5     B.10      C.20     D.40

查看答案和解析>>

同步练习册答案