【题目】(14分)如图,已知抛物线()与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
【答案】(1);(2)当a=时,S四边形BOCE最大,且最大值为,此时,点E坐标为(,);(3)P(﹣1,1)或(﹣1,﹣2).
【解析】
试题分析:(1)将A、B两点的坐标代入抛物线的解析式中,即可求出二次函数的解析式;
(2)过E作EF⊥x轴于F.设E(a,)(﹣3<a<0),则EF=,BF=a+3,OF=﹣a,∴S四边形BOCE==BFEF+(OC+EF)OF =,配方即可得出结论,当a=时,=大,即可得到点E的坐标;
(3)由P在抛物线的对称轴上,设出P坐标为(﹣2,m),如图所示,过A′作A′N⊥对称轴于N,由旋转的性质可证明△A′NP≌△PMA,得到A′N=PM=|m|,PN=AM=2,表示出A′坐标,将A′坐标代入抛物线解析式中求出相应m的值,即可确定出P的坐标.
试题解析:(1)∵抛物线()与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:;
(2)如图2,过点E作EF⊥x轴于点F,设E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四边形BOCE==BFEF+(OC+EF)OF===,∴当a=时,S四边形BOCE最大,且最大值为.此时,点E坐标为(,);
(3)∵抛物线的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,如图,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP与△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).
科目:初中数学 来源: 题型:
【题目】已知:甲、乙两车分别从相距300千米的A、B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)请直接写出甲、乙两车离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并标明自变量x的取值范围;
(2)它们在行驶的过程中有几次相遇?并求出每次相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.
(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);
(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;
(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,求证:AB=4PD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx-5(a≠0)经过点A(4,-5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.
(1)求这条抛物线的表达式;
(2)连接AB、BC、CD、DA,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分6分)小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明
想建一个圆形花坛,使三棵树都在花坛的边上.
(1)(本小题满分4分)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保
留作图痕迹).
(2)(本小题满分2分))若△ABC中AB=8米,AC=6米,∠BAC=,试求小明家圆形花坛的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解参加运动会的2000名运动员的年龄情况,从中抽查了100名运动员的年龄.就这个问题来说,下面说法中正确的是( )
A.2000名运动员是总体
B.每个运动员是个体
C.100名运动员是抽取的一个样本
D.抽取的100名运动员的年龄是样本
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于轴对称位置变换,说法正确的有( )
①对应线段平行且相等;
②对应点的连线被对称轴垂直平分;
③对应角相等;
④轴对称得到的图形与原图形全等.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区2014年投入教育经费200万元,2016年投入教育经费242万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com