【题目】在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A、B两点,点A在点B的左侧.
(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),是否存在实数k使得直线y=kx+1与以O、C为直径的圆相切?若存在,请求出k的值;若不存在,请说明理由.
【答案】(1)A(﹣1,0),B(2,3)(2)点P坐标为(,﹣)(3)k=时,使得直线y=kx+1与以O、C为直径的圆相切
【解析】试题分析:(1)当k=1时,联立抛物线与直线的解析式,解方程求得点A、B的坐标;
(2)如图2,作辅助线,求出△ABP面积的表达式,然后利用二次函数的性质求出最大值及点P的坐标;
(3)设以OC为直径的圆与直线AB相切于点Q,由圆周角定理可知,此时以此为基础,构造相似三角形,利用比例式列出方程,求得k的值.
试题解析:(1)当k=1时,抛物线解析式为 直线解析式为y=x+1.
联立两个解析式 得:
解得:x=1或x=2,
当x=1时,y=x+1=0;当x=2时,y=x+1=3,
∴A(1,0),B(2,3).
(2)设
如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).
∴
∴
当时,
∴△ABP面积最大值为,此时点P坐标为
(3)设直线AB:y=kx+1与x轴、y轴分别交于点E.F,
则
在Rt△EOF中,由勾股定理得:
令 即(x+k)(x1)=0,解得:x=k或x=1.
∴C(k,0),OC=k.
设以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时 如图3所示,
设点N为OC中点,连接NQ,则NQ⊥EF,
∴
∵
∴△EQN∽△EOF,
∴ 即:
解得:
∵k>0,
∴
即存在实数k使得直线与以O、C为直径的圆相切.
科目:初中数学 来源: 题型:
【题目】观察下列单项式:,,,,,,,写出第个单项式,为了解决这个问题,特提供下面的解题思路.
(1)这组单项式的系数依次为多少?系数符号的规律是什么?系数绝对值规律是什么?
(2)这组单项式的次数的规律是什么?
(3)根据上面的归纳,你可以猜想出第个单项式是什么?
(4)请你根据猜想,写出第个,第个单项式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.
(1)当a=﹣2,b=6时,求a-b=_____,线段AB的中点对应的数是 ;(直接填结果)
(2)若该数轴上另有一点M对应着数m.
①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.
②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2012年7月1日起某市执行新版居民阶梯电价,小明同学家收到了新政后的第一张电费单,小明爸爸说:“小明,请你计算一下,这个月的电费支出与新政前相比是多了还是少了?”于是小明上网了解了有关电费的收费情况,得到如下两表:
2004年1月至2012年6月执行的收费标准:
月用电量(度)50度有以下部分 | 50度有以下部分 | 超过50度但不超过200度部分 | 超过200度以上部分 |
单价(元/度) | 0.53 | 0.56 | 0.63 |
2012年7月起执行的收费标准:
月用电量(度) | 230度有以下部分 | 超过230度但不超过400度部分 | 超过400度以上部分 |
单价(元/度) | 0.53 | 0.58 | 0.83 |
(1)若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是多少元?比新政前少了多少元?
(2)若新政后小明家的月用电量为a度,请你用含a的代数式表示当月的电费支出.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,CD⊥AB,∠DEB=∠ACB,∠1+∠2=180°,试判断FG与AB的位置关系,并说明理由.请在下划线内补全解题过程或依据.
解:FG⊥AB,理由如下:
∵∠DEB=∠ACB (已知)
∴AC∥________ (__________________)
∴∠1=∠3(_______________________)
∵∠1+∠2=180°(已知)
∴∠3+∠2=_________(等量代换)
∴FG∥________ (_________________)
∴∠FGA=∠________(_____________)
∵CD⊥AB(已知)
∴∠CDA=90°
∴∠________=90°(等量代换)
∴FG⊥AB(_____________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为5,直线l切⊙O于A,在直线l上取点B,AB=4.
(1)请用无刻度的直尺和圆规,过点B作直线m⊥l,交⊙O于C、D(点D在点C的上方);(保留作图痕迹,不要求写作法)
(2)求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂接到遵义市一所中学的冬季校服订做任务,计划用A、B两台大型设备进行加工.如果单独用A型设备需要90天做完,如果单独用B型设备需要60天做完,为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.
(1)两台设备同时加工,共需多少天才能完成?
(2)若两台设备同时加工30天后,B型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.D,E分别为边BC,AC上一点,将△ADE沿着直线AD翻折,点E落在点F处,如果DF⊥BC,△AEF是等边三角形,那么AE=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com