精英家教网 > 初中数学 > 题目详情
11.将抛物线y=x2+bx+c先向左平移1个单位,再向下平移2个单位,得到抛物线y=x2-2x+1,求b、c的值.

分析 根据配方法求出抛物线y=x2-2x+1的顶点坐标,再利用平移得出原函数的对称轴和顶点坐标,进而得出b,c的值即可.

解答 解:∵y=x2-2x+1=(x-1)2
∴现将其向上平移2个单位,向右平移1个单位可得原函数,
即y=(x-1-1)2+2.
∴y=x2-4x+6. 
∴b=-4,c=6.

点评 此题主要考查了配方法求二次函数的顶点坐标和对称轴以及二次函数的平移,熟练掌握配方法是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,点O为坐标原点,在四边形OABC中,点A在y轴上,AB∥OC,点B的坐标为(6,6),点C的坐标为(9,0).
(1)求直线BC的解析式;
(2)现有一动点P从点A出发,以每秒1个单位的速度沿射线AB运动(点P不与点B重合),过P作PH⊥x轴,垂足为H,直线HP交直线BC于点Q,设PQ的长度为d,点P的运动时间为t秒,求d与t之间的函数关系式,并直接写出相应的自变量t的取值范围;
(3)在(2)问的条件下,在y轴和直线BC上分别找一点M和N,当四边形PQMN为菱形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC的顶点都在方格纸的格点上,将△ABC向右平移4格,再向下平移3格,其中每个格子的边长为1个单位长度.
(1)请在图中画出平移后的△A′B′C′;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程:
(1)$\frac{3}{x-1}$-$\frac{x-2}{x(x-1)}$=0
(2)$\frac{x}{x+3}$=1+$\frac{2}{x-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知抛物线y=x2-2x-3.将该抛物线在x轴下方的部分(不包含与x轴的交点)记为G.若直线y=x+b与G只有一个公共点,则b的取值范围是-3≤b<1或b=-$\frac{21}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,销售单价每提高5元,销售量相应减少20套,设销售单价为x(x≥60)元,销售量为y套,月销售利润为w元.
(1)试确定y与x的函数表达式,并求当销售单价为多少元时,月销售额为14000元?
(2)试确定w与x的函数表达式,并求当销售单价为80元时的月销售利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.用适当方法解下列方程
(1)x2+4x+1=0                   
(2)x(x+2)=-1
(3)x(x-2)=2-x                 
(4)(2x+1)2=x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,直线y=x+3与双曲线y=$\frac{m-3}{x}$( m为常数)交于点A(a,2)、B两点.
(1)求a、m的值和B点坐标;
(2)双曲线y=$\frac{m-3}{x}$上有三点M(x1,y1)、N(x2,y2)、P(x3,y3),且y1<y2<0<y3,则x1、x2、x3的大小关系是x3<x1<x2(用“<”号连接).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算(3ab-7)•(-4a2+6ab+7).

查看答案和解析>>

同步练习册答案