分析 先利用勾股定理计算出AB,再利用面积法求出OC,接着再利用勾股定理计算出OA和OB,则可得到抛物线与x轴的交点坐标为(-9,0)、(16,0)或(-16,0)、(9,0),然后利用交点式分别求出两种情况的抛物线解析式.
解答 解:如图,∵∠ACB=90°,AC=20,BC=15,
∴AB=$\sqrt{1{5}^{2}+2{0}^{2}}$=25,
∵$\frac{1}{2}$OC•AB=$\frac{1}{2}$AC•BC,
∴OC=$\frac{15×20}{25}$=12,
∴OA=$\sqrt{1{5}^{2}-1{2}^{2}}$=9,
∴OB=25-9=16,
∴抛物线与x轴的交点坐标为(-9,0)、(16,0)或(-16,0)、(9,0),
当抛物线过点(-9,0)、(16,0)时,设抛物线解析式为y=a(x+9)(x-16),把C(0,12)代入得a•9•(-16)=12,解得a=-$\frac{1}{12}$,此时抛物线解析式为y=-$\frac{1}{12}$(x+9)(x-16),
即y=-$\frac{1}{12}$x2+$\frac{7}{12}$x+12;
当抛物线过点(-16,0)、(9,0)时,设抛物线解析式为y=a(x+16)(x-9),把C(0,12)代入得a•16•(-9)=12,解得a=-$\frac{1}{12}$,此时抛物线解析式为y=-$\frac{1}{12}$(x+16)(x-9),
即y=-$\frac{1}{12}$x2-$\frac{7}{12}$x+12
综上所述,抛物线解析式为y=-$\frac{1}{12}$x2+$\frac{7}{12}$x+12或y=-$\frac{1}{12}$x2-$\frac{7}{12}$x+12.
点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0$<a<\frac{9}{16}$,且a<0 | B. | a≠0 | C. | a$>\frac{9}{16}$ | D. | a$<\frac{3}{4}$且a≠0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com