精英家教网 > 初中数学 > 题目详情
11.阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.
理由:∵线段EF为△ABC的中位线,∴EF∥BC,
由平行线分线段成比例得:动点P为线段AM中点.
由此你得到动点P的运动轨迹是:线段EF.
知识应用:
如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.
拓展提高:
如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.
(1)求∠AQB的度数;
(2)若AB=6,求动点Q运动轨迹的长.

分析 阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.
知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.
拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是$\widehat{AB}$,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH=$\sqrt{3}$,OB=2$\sqrt{3}$,利用弧长公式即可解决.

解答 阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.
故答案为线段EF.

知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′

∵△ABC是等边三角形,MN是中位线,
∴AM=BM=AN=CN,
∵AF=BE,
∴EM=FN,
∵MN∥BC,
∴∠AMN=∠B=∠GME=60°,
∵∠A=∠GEM=60°,
∴△GEM是等边三角形,
∴EM=EG=FN,
在△GQ′E和△NQ′F中,
$\left\{\begin{array}{l}{∠GQ′E=∠NQ′F}\\{∠G=∠FNQ′}\\{GE=FN}\end{array}\right.$,
∴△GQ′E≌△NQ′F,
∴EQ′=FQ′,
∵EQ=QF,
′点Q、Q′重合,
∴点Q在线段MN上,
∴段EF中点Q的运动轨迹是线段MN,
MN=$\frac{1}{2}$BC=$\frac{1}{2}$×8=4.
∴线段EF中点Q的运动轨迹的长为4.

拓展提高:如图2中,

(1)∵△APC,△PBD都是等边三角形,
∴AP=PC,PD=PB,∠APC=∠DPB=60°,
∴∠APD=∠CPB,
在△APD和△CPB中,
$\left\{\begin{array}{l}{AP=PC}\\{∠APD=∠CPB}\\{DP=BP}\end{array}\right.$,
∴△APD≌△CPB,
∴∠ADP=∠CBP,设BC与PD交于点G,
∵∠QGD=∠PGB,
∴∠DQG=∠BPG=60°,
∴∠AQB=180°-∠DQG=120°
(2)由(1)可知∠AQB=120°是定值,
所以点Q的运动轨迹是$\widehat{AB}$,设弧AB所在圆的圆心为O,在圆上任意取一点M,连接AM,BM,
则∠M=60°,
∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH=$\sqrt{3}$,OB=2$\sqrt{3}$,
∴弧AB的长=$\frac{120°×π×2\sqrt{3}}{180°}$=$\frac{4\sqrt{3}}{3}$π.
∴动点Q运动轨迹的长$\frac{4\sqrt{3}}{3}$π.

点评 本题考查三角形综合题、全等三角形的判定和性质、圆的有关性质、弧长公式等知识,解题的关键是理解轨迹的意义,学会添加常用辅助线,学会探究找到轨迹的方法,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.若m+n=12,mn=32,则m2+n2=80.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:(3-x)0-2-2=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,请根据图象回答下列问题:
(1)“基础电价”是0.5元/度;
(2)求出当x>240时,y与x的函数表达式;
(3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:$\frac{{x}^{2}-2x}{{x}^{2}-4}$÷(x-2-$\frac{2x-4}{x+2}$),其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.将字母A、B、C、D按如图所示的规律无限排列下去,那么第17行从左到右第14个字母是B.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在△ABC中,已知AC=5,且$\frac{1}{tan\frac{A}{2}}$+$\frac{1}{tan\frac{C}{2}}$-$\frac{5}{tan\frac{B}{2}}$=0,则BC+AB=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.问题再现:
如图1:△ABC中,AF为BC边上的中线,则S△ABF=S△ACP=$\frac{1}{2}$S△ABC
由这个结论解答下列问题:
问题解决:
问题1:如图2,△ABC中,CD为AB边上的中线,BE为AC边上的中线,则S△BOC=S四边形ADOE
 分析:△ABC中,CD为AB边上的中线,则S△BCD=$\frac{1}{2}$S△ABC,BE为AC边上的中线,则S△ABE=$\frac{1}{2}$S△ABC
∴S△BCD=S△ABE
∴S△BCD-S△BOD=S△ABE-S△BOD
又∵S△BOC=S△BCD-S△BOD,S四边形ADOE=S△ABE-S△BOD
即S△BOC=S四边形ADOE
问题2:如图3,△ABC中,CD为AB边上的中线,BE为AC边上的中线,AF为BC边上的中线.
(1)S△BOD=S△COE吗?请说明理由.
(2)请直接写出△BOD的面积与△ABC的面积之间的数量关系:S△BOD=$\frac{1}{6}$S△ABC
问题拓广:
(1)如图4,E、F分别为四边形ABCD的边AD、BC的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S=$\frac{1}{2}$S四边形ABCD
(2)如图5,E、F、G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S=$\frac{1}{3}$S四边形ABCD
(3)如图6,E、F、G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,
若S△AME=1、S△BNG=1.5、S△CQF=2、S△BFH△DFH=2.5,则S=7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.完成证明,说明理由.已知:如图,BC∥DE,点E在AB边上,DE、AC交于点F,∠1=∠2,∠3=∠4,求证AE∥CD.
证明:∵BC∥DE(已知),
∴∠4=∠FCB(两直线平行,同位角相等).
∵∠3=∠4(已知),
∴∠3=∠FCB(等量代换).
∵∠1=∠2(已知),
∴∠1+∠FCE=∠2+∠FCE(等式的性质).
即∠FCB=∠ECB,
∴∠3=∠ECD(等量代换).
∴AE∥CD(内错角相等,两直线平行).

查看答案和解析>>

同步练习册答案