精英家教网 > 初中数学 > 题目详情
17.如图,直线l:y=x+1交y轴于点A1,在x轴正方向上取点B1,使OB1=OA1;过点B1作A2B1⊥x轴,交l于点A2,在x轴正方向上取点B2,使B1B2=B1A2;过点B2作A3B2⊥x轴,交l于点A3,在x轴正方向上取点B3,使B2B3=B2A3;…记△OA1B1面积为S1,△B1A2B2面积为S2,△B2A3B3面积为S3,…则S2017等于(  )
A.24030B.24031C.24032D.24033

分析 根据已知条件得到△△OA1B1,△B1A2B2,△B2A3B3是等腰直角三角形,根据最新的解析式得到A1(0,1),求得B1(1,0),得到OB1=OA1=1,根据三角形的面积公式得到S1=$\frac{1}{2}$×1×1=$\frac{1}{2}$×12,同理S2=$\frac{1}{2}$×2×2=$\frac{1}{2}×$22,S3=$\frac{1}{2}×$4×4=$\frac{1}{2}×$42;…得到Sn=$\frac{1}{2}×$22n-2=22n-3,于是得到结论.

解答 解:∵OB1=OA1;过点B1作A2B1⊥x轴,B1B2=B1A2;A3B2⊥x轴,B2B3=B2A3;…
∴△△OA1B1,△B1A2B2,△B2A3B3是等腰直角三角形,
∵y=x+1交y轴于点A1
∴A1(0,1),
∴B1(1,0),
∴OB1=OA1=1,
∴S1=$\frac{1}{2}$×1×1=$\frac{1}{2}$×12
同理S2=$\frac{1}{2}$×2×2=$\frac{1}{2}×$22,S3=$\frac{1}{2}×$4×4=$\frac{1}{2}×$42;…
∴Sn=$\frac{1}{2}×$22n-2=22n-3
∴S2017=22×2017-3=24031
故选B.

点评 本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,三角形面积的计算,正确的识别图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.已知矩形ABCD中,AB=2$\sqrt{3}$-$\sqrt{2}$,BC=$\sqrt{6}$+1,则矩形ABCD的面积是(  )
A.5$\sqrt{2}$B.4$\sqrt{3}$-$\sqrt{2}$C.5$\sqrt{2}$-4$\sqrt{3}$D.5$\sqrt{2}$+4$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列命题正确的是(  )
A.△ABC中,∠A、∠B、∠C的对边分别为a、b、c.若a2+b2=c2 则∠B=90°
B.如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形
C.直角三角形中,两条边的平方和等于第三边的平方
D.△ABC中,若a=3、b=4则c=5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.请在如图所示的正方形和等边三角形网格内,仅用无刻度的直尺完成下列作图,过点P向线段AB引平行线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:因为AD∥BC(已知),所以∠1=∠3(已知).
因为∠1=∠2(已知),所以∠2=∠3.
所以BE∥DF (同位角相等,两直线平行).
所以∠3+∠4=180°(两直线平行,同旁内角互补).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列各式计算正确的是(  )
A.a5+a5=a10B.a6•a4=a24C.a6÷a6=1D.(a42=a6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.以菱形ABCD的对角线交点O为原点,对角线AC、BD所在直线为坐标轴,建立如图所示直角坐标系,若AD的中点E的坐标为(a,b),则BC的中点F的坐标为(-a,-b).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知x=$\sqrt{5}$+1,求代数式x2-2x-4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.则第二局的输者是丙.

查看答案和解析>>

同步练习册答案