精英家教网 > 初中数学 > 题目详情

填空并完成推理过程.
(1)如图(1),∵AB∥EF,(已知)
∴∠A+______=180°.(______)
∵DE∥BC,(已知)
∴∠DEF=______,(______)∠ADE=______;(______)
(2)如图(2),已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
解:BE∥CF,理由是:∵AB⊥BC,BC⊥CD.(已知)
∴______=______=90°.(______)
∵∠1=∠2,(______)
∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.
∴______∥______;(______)
(3)如图(3),E点为DF上的点,B点为AC上的点,∠1=∠2,∠C=∠D,试说明:AC∥DF.
解:∵∠1=∠2,(已知)∠1=∠3,(______)
∴∠2=∠3,(等量代换)
∴______∥______,(______)
∴∠C=∠ABD,(______)
又∵∠C=∠D,(已知)
∴∠D=∠ABD,(______)
∴AC∥DF.(______)

解:(1)∠AEF;两直线平行,同旁内角互补;∠CFE;两直线平行,内错角相等;∠B;两直线平行,同位角相等;

(2)∠ABC;∠BCD;垂直的定义;已知;BE;CF;内错角相等,两直线平行;  

(3)对顶角相等;BD;CE;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.
分析:根据平行线的判定方法与平行线的性质,结合图形写出理由即可.
点评:本题考查了平行线的性质,平行线的判定以及推理说明的书写格式,结合图形准确找出同位角、内错角、同旁内角是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

填空并完成推理过程.
(1)如图(1),∵AB∥EF,(已知)
∴∠A+
∠AEF
∠AEF
=180°.(
两直线平行,同旁内角互补
两直线平行,同旁内角互补

∵DE∥BC,(已知)
∴∠DEF=
∠CFE
∠CFE
,(
两直线平行,内错角相等
两直线平行,内错角相等
)∠ADE=
∠B
∠B
;(
两直线平行,同位角相等
两直线平行,同位角相等

(2)如图(2),已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
解:BE∥CF,理由是:∵AB⊥BC,BC⊥CD.(已知)
∠ABC
∠ABC
=
∠BCD
∠BCD
=90°.(
垂直定义
垂直定义

∵∠1=∠2,(
已知
已知

∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.
BE
BE
CF
CF
;(
内错角相等,两直线平行
内错角相等,两直线平行

(3)如图(3),E点为DF上的点,B点为AC上的点,∠1=∠2,∠C=∠D,试说明:AC∥DF.
解:∵∠1=∠2,(已知)∠1=∠3,(
对顶角相等
对顶角相等

∴∠2=∠3,(等量代换)
BD
BD
CE
CE
,(
同位角相等,两直线平行
同位角相等,两直线平行

∴∠C=∠ABD,(
两直线平行,同位角相等
两直线平行,同位角相等

又∵∠C=∠D,(已知)
∴∠D=∠ABD,(
等量代换
等量代换

∴AC∥DF.(
内错角相等,两直线平行
内错角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源:2014届安徽太和实验中学七年级下第一次月考数学试卷(解析版) 题型:解答题

填空并完成推理过程.

   (1)如图(1),,(已知)

          .(               )

      ,(已知)

            ,(              )

            ;(               )

   (2)如图(2),已知.试判断的关系,并说明你的理由.

  解:,理由是:.(已知)

            =     .(        )

       ,(        )

       ,即

                  ;(                

(3) 如图(3),点为上的点,点为上的点,,试说明:

  解:,(已知),(             )

      ,(等量代换)

            ,(                    )

    ,(                     )

    又,(已知)

    ,(             )

    .(                           )

 

查看答案和解析>>

科目:初中数学 来源:安徽省月考题 题型:解答题

填空并完成推理过程。
(1)如图(1),
∵AB∥EF,(已知)
∴∠A+_________=180°(___________)
∵DE∥BC,(已知)
∴∠DEF=_________,(_________
∠ADE=_________;(_________
(2)如图(2),已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由。
解:BE∥CF,理由是:
∵AB⊥BC,BC⊥CD,(已知)
_________=_________=90°,(_________
∵∠1=∠2,(_________
∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,
∴__________∥___________;(____________)
(3)如图(3),E点为DF上的点,B点为AC上的点,∠1=∠2,∠C=∠D,试说明:AC∥DF。
解:∵∠1=∠2,(已知)∠1=∠3,(_________
∴∠2=∠3,(等量代换)
__________________,(_________
∴∠C=∠ABD,(__________)
又∵∠C=∠D,(已知)
∴∠D=∠ABD,(_________
∴AC∥DF。(_________

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

填空完成推理过程:
[1] 如图,∵AB∥EF(已知)
∴∠A+____=180°( )
∵DE∥BC(已知)
∴∠DEF=_____( )
∠ADE=______( )。
[2] 如图,已知AB⊥BC,BC⊥CD,∠1=∠2,试判断BE与CF的关系,并说明你的理由。
解:BE∥CF,
理由:∵AB⊥BC,BC⊥CD,(已知)
∴__________ = ___________=90°( )
∵,∠1=∠2( )
∴∠ABC-∠1=∠BCD-∠2 ,即∠EBC=∠BCF
∴________∥________ ( )。
[3]如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D。
试说明:AC∥DF。
解:∵ ∠1=∠2(已知)
∠1=∠3( )
∴∠2=∠3(等量代换)
∴___∥___( )
∴ ∠C=∠ABD ( )
又∵ ∠C=∠D(已知)
∴∠D=∠ABD( )
∴ AC∥DF( )。

查看答案和解析>>

同步练习册答案