精英家教网 > 初中数学 > 题目详情

知识背景:杭州留下有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)

(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.

①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米?

②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.

 

(2)拓展思维:城西一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

【解析】(1)①利用宽与长的比是黄金比,取黄金比为0.6,假设底面长为x,宽就为0.6x,再利用图形得出QM=+0.5+1+0.5+=3,FH=0.3+0.5+0.6+0.5+0.3=2.2,进而求出即可;

②根据菱形的性质得出,对角线乘积的一半绝对小于矩形边长乘积即可得出答案;

(2)根据相似三角形的性质面积比等于相似比的平方得出即可

 

解:(1)设纸箱底面的长为x,则宽为0.6x,

根据题意得,0.6x2×0.5=0.3,即x=1.

=(1+0.5×4)×(0.6×2+0.5×2)=6.6(平方米).

②如图,连接A2C2,B2D2相交于O2,

设△D2EHEH边上的高为h1,

A2NMNM边上的高为h2,

由△D2EH∽△D2MQ

,∴h1=0.4,

同理得,h2,

A2C2,B2D2=3,

又四边形A2B2C2D2是菱形.

=5.625(平方米)

,

所以方案2更优.

(2)水果商的要求不能办到.

设底面的长与宽分别为xy,

xy=0.8,xy=0.3,

y=0.8-y,其图象如图所示.

因为两个函数图象无交点,故水果商的要求无法办到.(说明:不画图象,由方程的判别式判断,不给满分)

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

知识背景:杭州留下有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)

(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:城西一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省翠苑中学九年级下学期3月考数学卷(带解析) 题型:解答题

知识背景:杭州留下有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)

(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:城西一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省九年级下学期3月考数学卷(解析版) 题型:解答题

知识背景:杭州留下有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)

(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.

①按方案1(如图)做一个纸箱,需要矩形硬纸板的面积是多少平方米?

②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板做一个纸箱比方案1更优,你认为呢?请说明理由.

 

(2)拓展思维:城西一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

【解析】(1)①利用宽与长的比是黄金比,取黄金比为0.6,假设底面长为x,宽就为0.6x,再利用图形得出QM=+0.5+1+0.5+=3,FH=0.3+0.5+0.6+0.5+0.3=2.2,进而求出即可;

②根据菱形的性质得出,对角线乘积的一半绝对小于矩形边长乘积即可得出答案;

(2)根据相似三角形的性质面积比等于相似比的平方得出即可

 

查看答案和解析>>

同步练习册答案