试题分析:过O作OD⊥A′C′于D,交AC于E,由AC与A′C′,根据与平行线中的一条直线垂直,与另一条也垂直,得到OD与AC垂直,可得DE为三角尺的宽,由A′C′与圆O相切,根据切线的性质得到OD为圆的半径,根据直径AB的长,求出半径OA,OB及OD的长,在直角三角形AOE中,根据∠A=30°,利用直角三角形中,30°角所对的直角边等于斜边的一半可得出OE等于OA的一半,由OA的长求出OE的长,再由OD-OE求出DE的长,即为三角尺的宽;设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1,得到AM=2AH=2,可计算出MN的长,在Rt△MB′N中利用含30°的直角三角形三边的关系即可求得结果.
过O作OD⊥A′C′于D,交AC于E,
∵AC∥A′C′,
∴AC⊥OD,
∵A′C′与⊙O相切,AB为圆O的直径,且AB=4cm,
∴OD=OA=OB=
AB=
×4=2(cm),
在Rt△AOE中,∠A=30°,
∴OE=
OA=
×2=1(cm),
∴DE=OD-OE=2-1=1(cm)
则三角尺的宽为1cm
设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,
则有∠AMH=30°,AH=1,得到AM=2AH=2,
∴MN=AM+AC+CN=3+2
,
在Rt△MB′N中,
∵∠B′MN=30°,
∴B′N=
NM=
+2,
∴B′C′=B′N+NC′=3+
.
点评:解题的关键是熟练掌握当直线与圆相切时,圆心到切线的距离等于圆的半径.