精英家教网 > 初中数学 > 题目详情
(2010•鲤城区质检)“震灾无情人有情”,某市民政局将全市为玉树受灾地区捐赠的物资打包成件,其中帐篷和食品共360件,帐篷比食品多110件.
(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共9辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应租用甲、乙两种货车各几辆才能使运输费最少?最少运输费是多少元?
【答案】分析:(1)首先用未知数表示出打包成件的帐篷和食品的件数,然后根据“帐篷和食品共360件,帐篷比食品多110件”,列方程或方程组求出未知数的值即可.
(2)首先设租用甲种车t辆,分别表示出甲、乙两车运算的帐篷和食品的件数,联立(1)的结论得到一元一次不等式组,求出t的大致取值范围,从而求得t的正整数值,然后根据甲、乙两车的运费单价,表示出总的运输费用,根据所得函数的性质以及自变量的取值范围,即可求得运输费的最小值,即对于的t的值,从而确定运输方案.
解答:解:(1)方法一:设打包成件的帐篷有x件,则x+(x-110)=360(或x-(360-x)=110),(2分)
解得x=235,x-110=125,(3分)
答:打包成件的帐篷和食品分别为235件和125件.(4分)
方法二:设打包成件的帐篷有x件,食品有y件,则,(2分)
解得;(3分)
答:打包成件的帐篷和食品分别为235件和125件.(4分)
(注:用算术方法做也给满分.)

(2)设民政局应租用甲种货车t辆,应付的运输费是W元.则:
,(5分)
解得
∵t为正整数,
∴t=3或4或5(即民政局安排甲、乙两种货车时有3种方案).(6分)
∵W=4000t+3600(9-t),
即W=400t+32400(t=3或4或5);(7分)
∵400>0,
∴W随着t的增大而增大,
∴当t=3时,W取最小值且W=32400+400×3=33600(元),
∴9-t=9-6=3(辆);(8分)
答:民政局应租用甲种货车3辆、乙种货车6辆才能使运输费最少,最少运输费是33600元.(9分)
或民政局安排甲、乙两种货车时有3种方案.
设计方案分别为:①甲车3辆,乙车6辆;
②甲车4辆,乙车5辆;
③甲车5辆,乙车4辆.
3种方案的运费分别为:
①3×4000+6×3600=33600;
②4×4000+5×3600=34000;
③5×4000+4×3600=34400.
答:民政局应租用甲种货车3辆、乙种货车6辆才能使运输费最少,最少运输费是33600元.
点评:此题考查了二元一次方程组以及一元一次不等式组的综合应用,解题的关键是理清题意,找出等量关系,准确的列出方程(组)或不等式(组).
练习册系列答案
相关习题

科目:初中数学 来源:2010年福建省泉州市鲤城区初中学业质量检查数学试卷(解析版) 题型:解答题

(2010•鲤城区质检)已知直线y=x+4与y轴交于点C,与x轴交于点A.
(1)求线段AC的长度;
(2)若抛物线过点C、A,且与x轴交于另一点B,将直线AC沿y轴向下平移m个单位长度,若平移后的直线与x轴交于点D,与抛物线交于点N(N在抛物线对称轴的左边),与直线BC交于点E.
①是否存在这样的m,使得△CAD是以AC为底的等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由;
②在直线AC平移的过程中,是否存在m值,使得△CDE的面积最大.若存在,请求出m值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年福建省泉州市鲤城区初中学业质量检查数学试卷(解析版) 题型:选择题

(2010•鲤城区质检)已知直线y=x-3与函数的图象相交于点(a,b),则a2+b2的值是( )
A.13
B.11
C.7
D.5

查看答案和解析>>

科目:初中数学 来源:2010年福建省泉州市鲤城区初中学业质量检查数学试卷(解析版) 题型:解答题

(2010•鲤城区质检)有3张不透明的卡片,除正面写有不同的实数外,其它均相同.将这三张卡片背面朝上洗匀后.第一次从中随机抽取一张,并把这张卡片上标有的实数记作第一个加数,第二次从余下的两张卡片中再随机抽取一张,上面标有的实数记作第二个加数.
(1)写出第一次随机抽取的卡片上的实数与是同类二次根式的概率;
(2)请你用画树状图或列表等方法,求出这两个加数可以合并的概率.

查看答案和解析>>

科目:初中数学 来源:2010年福建省泉州市鲤城区初中学业质量检查数学试卷(解析版) 题型:填空题

(2010•鲤城区质检)如图,在⊙O中,已知DB=DA,∠DOB=58°,则∠C=    度.

查看答案和解析>>

同步练习册答案