精英家教网 > 初中数学 > 题目详情
如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求该一次函数的解析式;
(2)求tan∠OCD的值;
(3)求证:∠AOB=135°.
(1)由
-1=-2k+b
3=k+b
,解得
k=
4
3
b=
5
3

所以y=
4
3
x+
5
3
;(4分)

(2)C(-
5
4
,0),D(0,
5
3
).
在Rt△OCD中,OD=
5
3
,OC=
5
4

∴tan∠OCD=
OD
OC
=
4
3
;(8分)

(3)证明:取点A关于原点的对称点E(2,1),
则问题转化为求证∠BOE=45度.
由勾股定理可得,OE=
5
,BE=
(3-1)2+(2-1)2
=
5
,OB=
10

∵OB2=OE2+BE2
∴△EOB是等腰直角三角形.
∴∠BOE=45度.
∴∠AOB=135度.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,已知直线AC的解析式为y=-
1
2
x+2,直线AC交x轴于点C,交y轴于点A.
(1)若一个等腰直角三角形OBD的顶点D与点C重合,直角顶点B在第一象限内,请直接写出点B的坐标;
(2)过点B作x轴的垂线l,在l上是否存在一点P,使得△AOP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)试在直线AC上求出到两坐标轴距离相等的所有点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点A(1,2),B(-1,1)两点.
(1)求函数解析式并画出图象;
(2)x为何值时,y>0,y=0,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=
1
2
x+2分别交x、y轴于点A、C,P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9.
(1)求点P的坐标;
(2)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,菱形OABC在平面直角坐标系中,点C的坐标为(3,4),点A在x轴的正半轴上,直线AC交y轴于点D.动点P从A出发,以每秒2个单位的速度沿折线A-B-C向点C匀速运动,同时点Q从点D出发,以每秒
5
个单位的速度沿DA向点A匀速运动;设点P、Q运动时间为t(秒)
(1)求点A的坐标;
(2)求△PCQ的面积S(S≠0)与运动时间t的函数关系式,并写出自变量的取值范围;
(3)过点P作PH⊥AD于H,试求点P在运动的过程中t为何值时,tan∠PQH=
1
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图所示.
(1)观察图象,求出函数在不同范围内的解析式;
(2)说出自来水公司在这两个用水范围内的收费标准;
(3)若某用户该月交水费12.8元,求他用了多少吨水.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:
指距d(cm)20212223
身高h(cm)160169178187
(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)
(2)某人身高为196cm,一般情况下他的指距应是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(8,0),B(0,6),C(0,-2),连接AB,点P为线段AB上一动点,过P、C的直线l与AB及y轴围成△PBC,如图.
(1)当PB=PC时,求点P的坐标.
(2)△PBC的面积能等于△ABO的面积吗?若能,请求出此时直线l的解析式;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反映了小明从家到超市购物的全过程,时间与距家路程之间关系如图.
(1)图中反映了哪两个变量之间的关系?超市离家多远?
(2)小明在超市待了多少时间小明从超市回到家花了多少时间?
(3)小明从家到超市时的平均速度是多少?
(4)求返回时距离与时间(分)之间的函数关系式.

查看答案和解析>>

同步练习册答案