若圆内接正三角形的边长为2,则圆的半径为________.

分析:画图,利用正三角形的性质找到由内切圆半径,外接圆半径和边长的一半所组成的三角形(如△OBD),然后进行计算可求出外接圆半径.
解答:

解:如图,△ABC是⊙O的边长为2的内接正三角形.
连OB,OA,
∵△ABC是正三角形,
∴AO垂直平分BC,设垂足为D.
∴BD=1;
又∵∠OBD=30°,
∴OD=

,则OB=

=

,
故填

.
点评:熟悉正三角形的性质.它的内心,外心等是重合的.记住含30度的直角三角形三边之间的数量关系(1:

:2)以及正三角形的内切圆半径,外接圆半径和它的高的比(1:2:3).