精英家教网 > 初中数学 > 题目详情
如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D,∠BAD=∠B=30°
(1)求证:BD是⊙O的切线;
(2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理由.
(1)证明:连接OD,
∵OD=OA,
∴∠OAD=∠ODA=30°,
∴∠DOB=60°;
又∵∠DBA=30°,
∴∠ODB=90°,
∵D为⊙O上一点,
∴BD是⊙O的切线.

(2)BC=
1
3
AB.理由如下:
连接CD;
∵OD=OC且∠DOB=60°,
∴△ODC为等边三角形,
∴∠DOC=60°,
∴OD=
1
2
OB;
∵OA=OD=OC,
∴BC=OB-OC,
∴BC=
1
3
AB.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,割线PCD交⊙O于C、D,∠PAC=∠PDA.
(1)求证:PA是⊙O的切线;
(2)若PA=6,CD=3PC,求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,O是正方形ABCD的对角线BD上一点,⊙O与AB,BC都相切,点E,F分别在边AD,DC上,现将△DEF沿EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处,若DE=2,则正方形ABCD的边长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB、AC、ED分别切⊙O于点B、C、D,且AC⊥DE于E,BC的延长线交直线DE于点F.若BC=24,sin∠F=
3
5

(1)求EF的长;
(2)试判断直线AB与CD是否平行?若平行,给出证明;若不平行,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于(  )
A.1B.
3
C.2D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,已知AB=8,大圆半径为5,则小圆半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD=DB;③AP=BH;④DH为圆的切线.其中一定成立的是(  )
A.①②④B.①③④C.②③④D.①②③

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OEAB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.

查看答案和解析>>

同步练习册答案