分析 ①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2-2n≥0以及n2-2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.
解答 解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n>0,y1•y2=2m>0,
y1+y2=-2n<0,
x1+x2=-2m<0,
这两个方程的根都为负根,①正确;
②由根判别式有:
△=b2-4ac=4m2-8n≥0,△=b2-4ac=4n2-8m≥0,
∵4m2-8n≥0,4n2-8m≥0,
∴m2-2n≥0,n2-2m≥0,
m2-2m+1+n2-2n+1=m2-2n+n2-2m+2≥2,
(m-1)2+(n-1)2≥2,②正确;
③由根与系数关系可得2m-2n=y1y2+y1+y2=(y1+1)(y2+1)-1,
由y1、y2均为负整数,故(y1+1)•(y2+1)≥0,故2m-2n≥-1,
同理可得:2n-2m=x1x2+x1+x2=(x1+1)(x2+1)-1,得2n-2m≥-1,即2m-2n≤1,故③正确,
故答案为:3个.
点评 本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,根据不同结论灵活运用根与系数的关系是难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | k=$\frac{7}{2}$S | B. | k=3S | C. | k=$\frac{8}{3}$S | D. | k=$\frac{5}{2}$S |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
衡量指标 | 小敏 | 小芳 | 小聪 | 小明 |
平均数 | 90 | 85 | 90 | 85 |
方差 | 3 | 3 | 10 | 12 |
A. | 小明 | B. | 小芳 | C. | 小聪 | D. | 小敏 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com